Quantum Information Theory

Min-Hsiu Hsieh
University of Technology Sydney, Australia
October 30, 2015

Contents
I Quantum States and Channels| 1
[2_Toolboxl 6
[3 Source Coding: Schumacher Compression 9
[4 Channel Coding: HSW Theorem| 11
[6  Entanglement-assisted Classical Coding] 15
[6 Private Coding] 19
1 Quantum States and Channels
‘ Classical ‘ Quantum
Probability vector Density operators
Source daxd
Px(x) pa>0eC¥>% and Trpa =1
CPTP map
Channel Py|x Measurement A : @ — C
Entropy H(X) = -3 px(z)logpx(z) H(A)=—Trpalogpa
Conditional
Entropy H(Y|X)=H(XY)—-H(X) H(A|B), = H(AB) — H(B)
Mutual
Information I(X:Y)=H(X)-HX|Y) I(A:B),=H(A)— H(A|B)
C"n‘f\ldtfonal I(X:Y|2)=1(X:YZ)-I(X|Z) | I(A: B|C), = I(A: BC) — I(A|C)

Quantum State:

For a d-dimensional Hilbert Space H4, we fix the computational basis {|1), ..., |d)} in it, where |i) =
0,---,0,1,0,---,0)T. A d-dimensional pure quantum system can be mathematically described



by a unit-length vector
d
) = aili),
i=1

where o; € C and Z?Zl |aj|> = 1. We use the convention that the ket notation |¢) is a column
vector, and the bra notation (1| := |1)' is a row vector (from complex conjugate and transpose of
|1)). However, a quantum system can be mized. A mixed quantum state p can be mathematically
described as a density operator in C?*?, namely, it is a Hermitian (self-adjoint) matrix so that
p>0and Trp = 1. Tt is easy to verify that when p is rank one, p = |¢)v| for some |[¢)) € Hg.
Therefore, a quantum system p is pure if and only if its rank(p) = 1. Otherwise, it is mixed. We
denote by D(Hg) = {p: p > 0, Trp = 1} the set of density operators defined on H,.

Exercise 1 Show that Tr[p?] = 1 if and only if p is pure. If p is mized, then Tr[p?] < 1.

For any quantum system p € D(Hy) with rank s, we can always decompose (by spectral
decomposition)

K
p=>_ uilE;)E;]
j=1
where p; > 0 are eigenvalues of p with eigenvectors | Ej). Since Trp =1, we have 37, u; = 1.

Entanglement:

We define a bipartite pure quantum system [)¢)|ap € D(H4, ® Ha, ), where @ denotes the tensor
product. We can think of the quantum state |¢)) 4p held by two parties (we often call them Alice
(A) and Bob(B) in the quantum regime) whose local spaces are H,q, and H4,,, respectively. Since
{li)a ® |j) B} forms an othornormal basis for the Hilbert space Hq, ® Hqy,, we can write

da dp

V) aB = Z ZaijWA ® |j)B

i=1 j=1
h € C and da dp 12 =1
where a;; € C an Zizl j=1 ’0‘@]’ =1

Exercise 2 The quantum state pa held by Alice when ignoring the other party Bob is defined

da

pa = Trp|Y)X|ap = Z Bawr| 1) (@'],

=1
where Trp is the partial trace on Hq,. Compute the exact expression of By in terms of ouj.

A pure state |¢)ap is entangled if and only if it cannot be written as tensor product of two
pure states: |)ap # |$)a @ |¢)p for any |p)4 € Ha, and |¢)p € Ha,,-

Exercise 3 Define the mazimally entangled state (or an ebit) to be

[D4) (100) a5 + [11) aB) - (1)

1
AB:%

Verify that |®4)ap is entangled.



For a general quantum state pap € D(Hg, ® Hay), we say it is a separable state if and only if

PAB = Zpkpff) ® Pg)7 (2)

k

for some pff) € D(’HdA),pg) € D(Hay), o € R, and Y, pr, = 1. If pap is not separable, then it is
entangled.

Quantum Ensemble:

A quantum ensemble is a collection of n quantum states p% € D(Hp) with probability p,, where
q q PB p Y Dz,

> _1pe = 1, and is denoted by £ = {ps, p%}1_,. Equivalently, we can relate £ to a classical-
quantum state oxp:

n
oxp =Y pale)zlx @ ph, (3)
=1
where {|z)x}7_, denotes the computational basis in the auxiliary system X. The system X can
be viewed as the classical labels of the corresponding quantum states.

Exercise 4 Verify that the classical-quantum state oxp in Eq. (@ 1s not an entangled state between
systems X and B.

Exercise 5 Denote |+) := %(|0> +11)) and |-) := %UO} —1)). Let £ ={(1/2,|+)),(1/2,]-))}.

Write down the classical-quantum state oxp of the quantum ensemble £ in the matrix form.

Measurement:

A measurement is a device that reads out classical messages from a quantum system. It can be
mathematically described by A := {A4;}!' | of measurement operators (i.e. linear operators in #)
so that

n
SoAlai=1,
i=1
where [ is the identity operator in H. The outcome j after measuring the quantum state p with
A happens with probability
pj =TrA; pA;f»,
and the resulting quantum state is

1
/ T
p=—ApAl.
p;

Exercise 6 Show that 377 p; = 1.

If we do not care about the post-measurement quantum state, we can use the positive operator-
valued measures (POVM) formalism. A POVM A with n measurement outcomes consists of {A;}1" ;
where each 0 < A; < I and ) ; A; = I. Applying the measurement A on a quantum state p will
yield outcome k with probability

pr = Tr[Ayp].

Note that the set of projectors {II; := |i)}i|}¢_, is a special case of a POVM measurement.



Exercise 7 The POVM measurement A and general measurement A can be related as follows.
For a measurement A, we can construct elements of POVM measurement

A = Al A,
For a POVM measurement A, there exists a unitary U so that
A; = Uv/A,.

For a quantum ensemble & = {p;,p;}7_; and a POVM A = {A;}? ,, define the successful
probability of identifying the classical messages in £ by

Pc(g, A) = Zpi Tl'[piAZ‘].
i=1

Exercise 8 Let &€ = {(1/2,]4)),(1/2,|-))}. Design a POVM A so that P.(£,A) = 1.

Quantum Channels:

A most general quantum channel (or operation) N : D(H4) — D(Hp) is a completely positive and
trace-preserving (CPTP) map:

Naop @idr([Yp)XYplar) = oBr € D(HB @ HR)

for any quantum state py € D(H4) and any auxiliary purification system R with purification
[Yp)ar (ie. Trr|YpXYplar = pa).

Exercise 9 For a quantum system pa € D(Ha) with rank k: p = >"_; jij|EjXEj|, we can always
purify p as follows:

[Yp)ar =Y VEGIE) A ®|i)R (4)
j=1

where {|i)r} are orthonormal vectors in Hr. We call such a purification canonical. Verify

Trr¢p pp = pa.
Show that the purification is not unique in the sense that there exists other pure state |¢,)ar

s0 that Trr ¢psp = pa-

A quantum channel A/ can be equivalently represented by the Kraus representation:

N(p) = AjpAl,
=1

where {A;} are the Kraus operators of the channel H satisfying A}Aj =1

Exercise 10 Show that a classical channel py|x (y|z) acting on a classical input px (z) with x € X
and y € Y can be described as a special case of a quantum channel N on a density operator p.
Express the Kraus operators of N in terms of py|X(y|x) and the density operator p in terms of

px ().



A closed quantum system evolves according to a unitary. Hence a noisy quantum evolution (a
quantum channel) A on p € D(H 4) can be considered as:

N(p) = Tre[U(p @ [0)0|)UT]

where U is a unitary evolution on system H4 ® Hp. This relation allows us to construct Kraus
operators {A; := (j|gU|0)g}.

Exercise 11 Define a quantum erasure channel with probability :
Ne(p) = (1 —€)p + ele)el
where |e)e| L p. Construct Kraus operators {A;} for Ne.

We can construct a measurement map £y : A — AX associated with a measurement {A;}"
as follows:

Enlpa) =D Miphi @ |iXilx.
=1

Entropic Measures:

Define the von Neumann entropy of a quantum state py € D(H4) to be
H(pa) = H(A)p :== —Trpalogpa.
Let the spectral decomposition of p be

pa= Y palzala.

rzeX

Then H(A), = >, cx —Pzlogp, := H(X), where H(X) is the Shannon entropy of a random
variable X whose distribution is Pr(X = x) = p,.

Exercise 12 Show that H(p) = 0 if and only if p is pure.
Exercise 13 Show that H(p) = logd if and only if p is a completely mixed state I/d in Hg.
The quantum conditional entropy of a bipartite quantum state pap is defined as
H(A|B), = H(AB), — H(B),,
where H(B), is the von Neumann entropy of the reduced density operator pp = Tra pap.

Exercise 14 Show that the quantum conditional entropy of a pure entangled state |1)) ap is nega-
tive.

The quantum mutual information I(A : B), of a quantum state pap is defined as

I(A:B),:=H(A), — H(A|B),.

Lemma 15 (Data Processing Inequality) Let opr = Na_p(par). Then
I(B:R)y <I(A:R),.
The conditional quantum mutual information I(A : B|C'), of a quantum state papc is defined

I(A: B|C), == H(A|C), — H(A|BC),.

Exercise 16 (very hard) Show that I(A : B|C), > 0 for any papc. This is the so-called strong
subadditivity.



2 Toolbox

Quantum Typicality

In this section, we will fix the distribution p, on X. Let 2" := x1x2 - - - x,,, where x; € X for each
i. Let N(z|z™) denote the number of occurrences of the symbol z in X" in the sequence z". The
type tzn of a sequence z" is a probability vector whose element

1
tyn(a) = —N(alz™) Va € X.
n
Define the set of sequences of type ¢ by
T' = {a" i tyn =t}

Let
s ={t:Va € X, |ty — pa| <9I}

Define the d-typical set 1§’y be
n n 1 n
Ts'xy = 2" :VYae€X,|=N(a|z") —pa

n
= Uﬁn,

teTs

-

Lemma 17 For any €,0 > 0 and n sufficiently large,

e Pr{X" €T/} >1—¢

° |7:ST,ZX| < 2MHX)+ed] for some contant c.

o 2 nHX)+c] < Pr(a") < 2 nlH(X)—cd] yyn ¢ X -
Exercise 18 Prove Lemma[I7

Recall that a density operator can be written in terms of
p=_ pelr)al.
zeX

The eigenvalues {p,} form a probability distribution (of a random variable X) so that we can
define typical sequences and so on. Moreover

Thus, we can define the type projector
M=y [a")a",
xneT

and the d-typical projector

bo= D I =) T

x"ETng tets



Exercise 19 Fort € 75, prove that
17| > 2nlH (p)=n(9)]
where n(6) — 0 as 6 — 0.

Lemma 20 For any ¢, > 0 and n sufficiently large,
° Trp®"1_[gp >1—e.
o I, | =TrIly, < 2 H(P)+ed] for some contant c.

° zfn[H(p)Jrcé}HgL’p < Hgﬁpﬁ@nngﬁ < an[H(p)fcé]ng_
Exercise 21 Prove Lemma [20.

For any sequence 2™ € Ty, we can permute z" into
m(z") =X = (L, L X)L X))
where the number of occurrences of symbol a is m, := N(a|z™). We can then define the conditional
typical projector II§ (z+)

mx|

1§, (a4) = 115, 8.0x)’

RIM™ @...xII

6p1 6p2

where each typical projector Hm’i of p; satisfies Tr Hgn’ p®mZ > 1—|X|"'e. Since z™ € T,
m; =~ np;. Therefore, there exists n large enough so that H , Vi, are typical projectors.
We can then define the conditional typical projector for pxn = Pz, @ -+ ® py,, as follows:

3, = Usdly (1)UL,
where U, is the unitary permuting the corresponding Hilbert spaces:
Urpa, UL = pan.
Lemma 22 For any €, > 0 and n sufficiently large,
° ’I‘rpxnﬂgﬁprn >1—e.

. |Hgbpzn‘ < on[H (B|X)+cd] for some contant c.

e 2~ n[H(B\X)—&-cé]Hn < ngznpxnﬂg%n < 9—n[H(B|X)—cd|TIn

7 Pzm - Pz

Exercise 23 Prove Lemma[22.



Distant Measures

I will only introduce one distant measure in this short course. You can find a few others in the
literature.
Define the trace norm (or the ¢1-norm) of an Hermitian operator A to be:

|All1 := Tr VATA.

()

Exercise 24 Let

Compute || X ||
Proposition 25 The trace norm satisfies

o Fuithfulness: ||All1 = 0 if and only if A=0.

e Homogeneity: ||cAlly = |c|||All1 for any ¢ € C.

e Triangle Inequality: ||A+ Bl < [|A]l1 + || B]|1-
Exercise 26 Let A be any Hermitian operator. Show that

AL = 7111%2}\}%[ Tr AA.

One of the most commonly used distant measures is called the trace distance. The trace distance
between two density operators p and o is ||p — ol|1.
Lemma 27 (Monotonicity) The trace distance is monotone under cptp maps N :

IN(o = s < llo — ol (5)

Exercise 28 Show that if the two states p and o commute, then the trace distance is equivalent to
the variational distance of two probability distributions.

Exercise 29 Fiz a quantum ensemble € = {(po, po), (p1,p1)}. Show that the success probability
P.(€) := maxp P.(E,A) is

1 1
Pe(&) = 5 + 5lpopo = pronls.
Lemma 30 (gentle measurement) Fiz a density operator p and an operator 0 < A < I so that

TrAp>1—ce

Then
lp— VApVA|L < 2V/e.

Exercise 31 Prove Lemma [30.
Lemma 32 If ||p — 0|1 <e, then
H(p) — H(o)| < 2clogd + 2h(c).

where h(z) = —xlogz — (1 — z)log(1 — x).



Lemma 33 If ||pap — caBll1 <, then
[I(A:B),—I(A: B)s| < 6elogda + 4h(e),
where h(z) = —xlogz — (1 — z)log(1 — x).

The set of generalized Pauli matrices {Up },,ejq2] 18 defined by Up.gyx = Za(D)X4(k) for k,1 =
0,1,---,d—1 and

Xa(k) = [s)(s + k| = Xg(1)",

Za(l) =Y ) (s| = Za(1)".

The + sign denotes addition modulo d.
We will always use |®;) to represent the d-dimensional maximally entangled state (subscript
will be omitted when the dimension is clear from the context):

1

@)t = —=> |40 (7)
vd 5
We have the following result:
1 &
= Y UneDdP Ul o) =1"er?, (8)
m=1
where 74 = 78 = é.
Exercise 34 Prove Eq. (@
We will also need the following equality:
(I®U)®) =U" 1)) (9)

for any operator U, and U denotes transposition of U.

Exercise 35 Prove Eq. (@

3 Source Coding: Schumacher Compression

For a quantum source p4 € H4 with purification [¢?) 4r, we define an (n, R, €) source code by
e compression operation & : 7—[?” — Honr;
e decompression operation D : Honr — HS"

so that
[(WhR)®" = Do & (¥R, <e.

We call R is achievable if for any d,¢ > 0, there exists an (n,R + ,¢) source code. Define
C(p) = inf{R : R is achievable}.



Theorem 36 (Quantum Data Compression [Sch95])

Direct Coding Theorem. Let the spectral decomposition of p = .y pe|z)z|. Shorthand
Yhp = Whp)® I = II§ , and IT; = I-1I} ,. Note that {IIo,II; } forms a projective measurement.
We can construct the compression operator £ as the composition of the following operations:

E1(p®") := o1 = Hop® Tl @ |0)(0] x + I1; p®"II; @ [1)(1]x

Ea(01) = 02 = Tpp™ Ty @ |0)0]x + Tr(I1p™")| LYL | @ [1)(1]x.

The decompression operation D simply discards the classical system X:
D(03) := o = pp®" "Iy + Tr(M1p®™)| LY L |.
We can verify that

[WAr — Do EWiR)lh < [hg®10)0lx — E(War)l
< |l(¥ir — Mo¥igMo) @ [OX0Lx I + | Tr(TILp™™)[ LXL [|h
<

2/ + €

where the first inequality follows from monotonicity of trace distance (Lemma ; the second
inequality follows from the triangle inequality for trace distance; the third inequality uses the
gentle measurement lemma (Lemma and quantum typicality TrIT; p®" < e.

|

Converse. For any (n, R + J,€) source code with £ : A" — W and D : W — A with |W| = 2"%,
let

WAngn = D(UI?VA)»
where

owrr == E(YAR),
so that

[¥ir —wiglh <e
Then

2nR |[HW)o| + |HW|R")s|
[H(W)o — H(WI|R")|
I(W:R"),

I(A™: R™),

I(A™: R")y — né
2H(A™)y — neé

= 2nH(p) — ne.

AV

(A\VARAVS

The fourth line follows from data processing inequality (Lemma . The fifth line follows from
the continuity of the mutual information (Lemma [33).
|

10



4 Channel Coding: HSW Theorem

The packing lemma below will prove to be a powerful tool in quantum information theory. The
technique used here is simple, directly analogous to the classical coding theorem.

Lemma 37 (Packing [HDWO8]) We are given an ensemble {\n,, 0m }mes with average density

operator
o= Z AnOm.-
meS

Assume the existence of projectors I1 and {Il,, }mmes with the following properties:

Tropll, > 1—c¢, (10)
Tro,Il > 1 —¢, (11)
Trll, < d, (12)
oll < DI (13)

for allm € S and some positive integers D and d. Let N = |[yD/d]| for some 0 <~ < 1 where |r]
represents the largest integer less than r. Then there exists a map f : [N] — S, and a corresponding
set of POVMs {Ag}ren) which reliably distinguishes between the states {0 ¢(x)trein] i the sense
that

TI‘O'f(k)Ak >1-— 4(8 + \/g) - 8")/

for all k € [N].

Proof. Let XV denote a sequence of random variables X1, Xo, . .., Xy, where each random variable
X} takes values from S and is distributed according to A. Set f(k) = Xj. Each random code
C = {04, }re[n) 1s generated according to X}, = xy. Define p.(k) to be the probability of error for
a single codeword o, :

Pe(k) = Trog, (I — Ag),

where the POVM elements {Ay} are constructed by the so-called square root measurement [Hol98|

SW97]
N _% N -
Ay = (Z ’rxl> T,, (Z Tm>
=1 =1

T,, = III,II.

[SIE

with

Define p.(C) to be the average probability of error, averaged over all codewords in C:

Define p. to be the average probability of error, averaged over all possible random codes C' to be:
De = EXN [ 8(0)] :

The idea here is that if the average probability of error p. is small enough, we can then show the
existence of at least one good code. In what follows, we will first show that p. < € for some ¢ — 0

11



when n — oo.

Invoking Lemma we can now place an upper bound on p.(C):

N
1
Pe(C) < & > 200 = Trow, Ye,) +4)  Trow Yo, | . (14)
k=1 I#k

The gentle operator lemma (Lemma and property give
| oIl — 0| < V/8e. (15)

By property and

Tron T Tr oIy, — || Hop I — 04|

1—e—/8e (16)

>
>

For k # [, the random variables X and X; are independent. Thus

EXN [TrUXkTXl] TI‘(HEO’Xkﬂ EHX;)
D'ETr Iy,

d/D. (17)

IA A

The first inequality follows from Eox, = o and property . The second follows from I < 1 and
property . Taking the expectation of , and incorporating and gives
Pe < 2(e + V&) + 4(N — 1)d/D,
< 2(e 4+ V8¢) +4Nd/D (18)

2
2+ V8e) + 4y =: €.

Two more standard steps are needed.

i) Derandomization. There exists at least one particular value 2™V of the string X such that
this code C* = {0~} for which p.(C*) is at least as small as the expectation value. Thus

pe(C*) < €. (19)
ii) Average to maximal error probability. Since

N 1
pe(c ) = N Zpe(k) < 5,7
keN

then p(k) < 2¢’ for at least half the indices k. Throw the others away and redefine f, N and
7 accordingly. This further changes the error estimate to 4(c + v/8¢) + 8.

Lemma 38 (Hayashi, Nagaoka [HNO3]) For any operators 0 < S <1 and T > 0, we have

1-VS+T 'SVSTT '<2(1-8)+4T.

12



Classical Communication
For a quantum channel N : A — B, we define an (n, R, €) channel code by
e an encoding operation £ : X = {1,2,--- ,2"%} - A;
e a decoding POVM A : B — {1,2,--- 2"} = X
so that R
Pr{X # X} <e

We say that the rate R is achievable if for any €, > 0 there exists an (n, R — ¢, ¢) channel code.
We define the classical capacity over the quantum channel N:

C(N) = sup{R: R is achievable}.
Define the Holevo quantity of a quantum channel N : A — B:

XWNV) = mgxI(X :B),

where

PXB = ZPH@(»’C\X @ Nasp(¥l).

xT

Denote

V) = Tim Sy (AE).

n—oo N

Theorem 39 (HSW theorem [Hol98, [SW97])
C(N) = Xr (N)

Direct Coding Theorem. Fix any ensemble {p,, p,}. We construct a new ensemble {p/n, pgn },
where

Pgn 3
Phn = Pr{75x ] ifat € ({LX .

0, otherwise
It is not hard to verify that

Ip" = pllx < 2e

We can now apply packing lemma on the ensemble S = {p/.n,0.n} to prove the direct coding
theorem, where
ozn = N(pz1) @N(pzy) @ - @ N(pa,,)-

Note that

E[S]:=0 = Zp;na$n.
mn
We also have
|l — o1 < 2

where o := N (Y, pzpz). The projectors of II and {IL,,} in the packing lemma are chosen as
follows:



Then by the properties of (conditional) typical projectors

TrIlg, om > 1—c¢
Tr Hg,gg@m > 1
Trily, , < 2B+l
o0, < (1- e)_IQ—H[H(B)a—ca]HgU’
where
d = 2MHBIX)otcd]
D = (1—¢) o nlH(B)o—cd]

Choosing N = 2"/(X:B)o=3¢0] and o = 277 The error probability is
Pe < 2(e+V8e) +4x 27" 5 0. (20)

Converse. Here we can use a simple trick. Instead of proving the converse for classical capacity,
we prove a converse for common randomness generation. Since classical communication can be
used to generate common randomness, hence the capacity of common randomness generation can
only be larger than the classical capacity C(N).

The general protocol for common randomness generation begins with Alice preparing a maxi-

mally correlated state
2nR

= 1 g
Dy = 27722 i3 )(ii].
i=1

After her encoding and sending through A, Bob performs his decoding measurement on the channel
output B"™ of the sate op;pn to recover a state wysp that is e-close to @y pr:

lwnrar — @arnr |l < e
Then

nRk

|
~

VAN VAR VAN
~

The first inequality follows from continuity of mutual information (Lemma . The second in-
equality follows from data processing inequality (Lemma . The final inequality follows from the
definition of Holevo x quantity.

|

14



5 Entanglement-assisted Classical Coding

We first describe a general entanglement-assisted classical communication protocol. Alice and Bob
are connected by a large number n uses of the quantum channel A’ : A’ — B. Alice controls the
channel input system A’ and Bob has access to the channel output B. They also have entanglement
in the form of n copies of some pure bipartite state p4/5,. Any such state is determined upto a
local unitary transformation by the local density operator pA/ = Trp parp. Alice and Bob use
these resources to communicate, in analogy to superdense coding. Based on her message Alice
performs a quantum operation on her share of the entanglement. She then sends it through the
quantum channel. Bob performs a decoding measurement on the channel output plus his share of
the entanglement. They endeavor to maximize the communication rate.
We define an (n, R, ) entanglement-assisted code by

e a set of unitary encoding maps {& }jeonn) acting on A™ := A ... A}, for Alice;
* Bob’s decoding measurement A = {Ay},c[onr) acting on B"B™.
such that for all k € [2"F]

Tr[Ap(N®" 0 &) @ I)(¢®™")] > 1 —e.

We say that the rate R is achievable if for any €, > 0 there exists an (n, R—J, €) entanglement-
assisted code. Define the entanglement-assisted classical capacity of a channel N

Coa(N) = sup{R : R is achievable.}.

Define
I(Na—p) =maxI(A: B),

PAA!

where o4 = N (paa).

Theorem 40 (Entanglement-assisted Capacity [BSST02])
Cea(N) = I(N).

Direct Coding Theorem. The proof can be done using the packing lemma. However, it requires
further manipulation. The following proof comes from [HDWO0§].

Let the size of distinct types be T', and ¢, ..., ¢t be an ordering of the types t,~». For each type
ta, we denote the size of its type class do, = |7, |, and denote its type projector II . Define [®,)
to be the maximally entangled state on a pair of d,-dimensional quantum systems A" and B

1 n n
|®a>A’"B’n = \/CT& Z ’.ZU >A/n‘$‘ >B/n, (21)

z" €T

The maximally mixed state
1

n
o = —II .

da
Note that Alice and Bob’ s preshared entangled state admits the following decomposition:

|0) " o= (W) g = Y \/Pal®a), (22)

15



where po, =) _» eTn Dan- The distinct types induce a decomposition of the Hilbert space H®" of

A" (correspondingly of B'") into a direct sum

T
7‘[®n = @ Hta .
a=1

Let G = {(917927'” 7gT) Y 0o € {1) ,di},(){ € {17 7T}}7 B = {(b17b27_:" 7bT) : bOl € {071}}7
and S = G x B. Every element § € S is uniquely determined by § € G and b € B. Define a unitary
operation Uz for each §€ S to be

Us

T
Uys = D1y, (23)

a=1

where {U,, } are the d2 generalized Pauli operators @ defined on H;,. Define

2B = W 1) [(Us @ D)W ampm (U @ 1) (24)
= [ U1 Us),

where
0= Nlpan)-

The last equality follows from @
Consider the ensemble {1/|S|,05}scs. Let o be the average state of the ensemble, then

1
7 s 2
ses

- |B|1\g| Z DD Vbabd (N @) [(Uig ® 1)|a)(Por| (U @ 1)} , (25)

9eG peB o’
= pa (N (x2) @ 7L) -
The last equality comes from and below. When o = o/,
1
o a®"1{f1q>ahf]
i S 0 50 e
9€9 beB

1
= (N®n ®I)@ E e § pa(Uga ®I)®Q(Uga ® I)
g1

gr

= (N®" @ Ipa (7l @ 730). (26)

The last equality follows from . When a # o, we get :
1
Bg] 2 2 VPP (N @ 1) | (U5 D) (@ (U} D)
geg EEB

1 (—1)ertbor o T
= g VPab 3 3 S (N 1) |(Uy, © 1)|2a) (Bl (U, @ D)

a”a babgy 9aga!

=0.

(27)
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Define the projectors on B’ B™

Iy = (UG, (IeU;),

= () @115,

®y

=

For all € > 0,0 > 0 and all sufficiently large n,

Trosdly > 1—e¢
Trogll > 1-—c¢
TrIl; < 2nHAB)+c]
oll < 2 nH(Ae+H(B)o—cdly

Let Az = ﬁ and R = I(A: B)g — (2c¢+ 1)0. We now apply the packing lemma to the ensemble
{)\s,05}ses and projectors IT and IIy. Thus there exist a map f : [2"7] — S and a POVM

{Ak}repenr) such that
TI‘O'f(k)Ak >1-— 6’,

with
¢ =4(e+V8e) +16 x 27,

Proofs of properties —.
1. Eq. : By and ,
Trozlly = Tr 0®”H39
>1—ce.
The last line follows since IT5 p is the d-typical projector of 6.

II. Eq. (31): Shorthand P = I — P. Then
I =115 vy @ 105,
ZI®I_I®ﬂgp_ vg,/\/(p)@)l'
We have
Tr JgH
>Troz—Troz(I ® f[:{p) —Tr O'g(ﬁgN(p) ®I)
=1- rﬁ"[ﬂmﬂ?,p] - Tﬁ“W(ﬂ)@”ﬁZ{N(m]
>1—2e.

III. Eq. : This follows directly from the property of quantum typicality.
TrIly = TriIg, < 2nti(AB)s+ed]

IV. Eq. : From Exercise , we can bound the density operator 7, by

o = e onlH ()@
Trll} — %p

17
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Then
(T @115,
= > pa [ (W N (ra)Tinr) ) © (T3l Ty, )|

5 " n —n[H(p)—n(d)]1Tn
( 5,N(p)N® (ZPQTFOC) H(S,N(p)) X (2 [H(p)—n( )]H(S,p>

—n[H(N(p))—cé]tn —n[H(p)—n(8)] 11N
(2 [H(N () ]HJ,N(p)>®<2 [H (p)—n( >1H57p>
9—n[H(p)+H (N (p))—cd—n(d)] 11
9—n[H(A)o+H(B)o—cd—n(9)] I

Holl = (Hg,/\/ (p)®Hgyp)

Zpa(N®"(7ra) R Tq)

IN

IA

where the first inequality follows from and the second inequality follows since ) pamTa =
XN
i

Converse. It suffices to prove a converse for the entanglement-assisted common randomness
generation. In this protocol, Alice prepares a common randomness state ® 71 of size 2%, and
performs an encoding operation before sending through the channel A/. Bob then performs a
decoding POVM on the channel output B and his half preshared entangled system T’z of on7, B2
to generate wyspr so that

llwarrner — Poaraar|f < e

|
Then
nR = I(M:M)g
< I(M:M), +né
< I(M:B"Tg), + ne
= I(TgM : B")y +I(M :Tg)y — I(B" : Tg)y + ne
< I(TgM : B"), + né
<

max [ (TgM : B"), + ne’
g

I(N®™) + né

nI(N) + ne'.

The first inequality follows from the continuity of mutual information (Lemma . The second
inequality uses data processing inequality (Lemma . The third inequality follows since I(M :
Tp)e =0 and I(B™ : Tg)s > 0. The second last line uses the result in Exercise The last line
follows since the quantity I(N®") = nI(N) is additive.

Exercise 41 Denote oxap = Y., po|a)Xx|x @ Na_p(p24). Show that
max [ (XA: B), = I[(N).
e

Exercise 42 Show that
I(NM @ N2) = I(Ny) + I(Na).

18



6 Private Coding

The core technical tool for proving the private capacity is the following covering lemma. The
following explicit form of covering lemma first appeared in Ref. [DHWOG].
Covering Lemma

We first prove a quantum generalization of the covering lemma.

Lemma 43 (Covering lemma) We are given an ensemble {py, 0z }zex with average density op-
erator 0 = )y Pa0z. Assume the existence of projectors I1 and {Il,},cx with the following
properties (V x € X ):

Tro, I, > 1—g¢, (40)
Tro, I > 1—e¢, (41)

T < D, (42)
Mo, 0, < d ',. (43)

In addition, we require 11, and o, to commute for all x. The obfuscation error of a set S C X s

defined as
1
E Z Oy — 0O

€S

oe(S) = ‘

1

Define the set C = {Xs}se[N}; where Xy is a random variable chosen independently according to
the distribution p on X, and N = [y~1D/d] for some 0 <~y < 1. Then

3

Pr{oe(C) > 3¢ + 19/e} < 2D exp (-2 fn 27> . (44)

Proof. The proof of the covering lemma involves the following steps.
1. Define o/, = II,0,11,. Since o, and II, commute, implies

low — ol < e

2. Define v/, = o II. Then and Exercise [26| give
Trw!, = Tr1lo),
> Trlo, — |jog — o1 (45)
>1—2e.
Furthermore, the gentle measurement lemma (Lemma gives

|lwh — al|li < V16e.

Applying the triangle inequality, we have

oty = 0%l + llog — ol

€+ V16e. (46)

oty = oully <
<
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. Define ' = 3"y p(x)w),. Let II be the projector onto the subspace spanned by the eigen-
vectors of w’ with eigenvalue > eD~!. Define w, = IIw,II and w = Iw'IL. Since implies
that the support of w’ has dimension < D, eigenvalues smaller than eD ! contribute at most
€ to Trw’. Together with thus gives

Trw>Trw' —e>1-—3e (47)
Furthermore, the gentle measurement lemma (Lemma gives

lw— o'l < V24e. (48)

. Consider the operator ensemble {p,, dw, },cx. The expectation value of this ensemble is

Z prdw, = d <ﬁ Z pxw;fl>

zeX zeX
= dIw'l
> ¢,

where t = ed/D. Now application of the operator Chernoff bound (Lemma gives

N 62
Pr{]iwaMs (1 :I:e)w]} < 2D exp <_N2 152) . (49)

. The last step is to translate into a statement about ojps,. Assume that for some set
S € X the following condition holds:

5 S’ D wm € [(1£e)w].
meS
This implies that

[S] 5] 2 n =

meS

1
Together with thus gives

Tr <‘S|Zwm>>1—4e (51)

meS

Application of the gentle measurement lemma (Lemma |30) to gives

IS\Zw Zwm

meS meS

< V/32e. (52)

1

Application of the triangle inequality together with gives

|S|Z miizam S |S|ZHW O-m”l

meS mGS meS

€ + V16¢, (53)

IN
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and analogously
|w' — o1 < e+ V16e. (54)

Finally, combination of , , and — with the triangle inequality gives
1
@ Z Om — O
m

The statement of the lemma follows immediately from .

oe(S) = ‘ < 3e+ 19vVe.

1

Lemma 44 (Operator Chernoff Bound [AW02]). Let &,---,&, be independent and identically
distributed random variables with values in the algebra B(H) of bounded linear operators on some
Hilbert space H, which are bounded between 0 and the identity operator I. Assume that the expec-
tation value E¢s = 0 > tI. Then for every 0 <n < 1/2

v 2
Pr {i;gs # [(1 in)&]} <2 dim# exp <—V2n1£2> ,

where [(1 £n)0] = [(1 —n)8; (1 + n)0] is an interval in the operator order: [A;B] = {{ € B(H) :
A<¢<B).

Consider an ensemble {p,n, 0% }pnexn with average density operator o = Y oan penc . We
can define a covering code C as follows.

Corollary 45 (Covering Code) There exists a covering code C = { X} ¢[s) of size S = ol (X:E) o +3cd]
so that for all €,0 > 0 and sufficiently large n,

3
Pr{oe(C) > 3¢ + 19v/e} < 2|dg|™ exp (4161122"05) . (55)

Proof. We can relate to Lemma [43] through the identifications X — X", 0, — ozn, p — p",
o= o =y 41y and I — I with

Nea

) 11" (x") z" e TR
Hn ny _ E‘X,(S ) X,
Blx.s(@") { 0, otherwise.
Thus, we see that
_D — 271[H(E)0-+C6}
d — 271[H(E|X)0706]

These follow from the properties of typical subspaces and conditionally typical subspaces men-
tioned before. ]
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Private Communication

A quantum channel N with the classical encoding map € : X — A can always be viewed as a
classical-quantum channel W : X — A so that

W(x) = N(E(z)) = oBE,.

Moreover, in the private setting, a classical-quantum channel W : X — BFE will generate two
output quantum systems, where B is for the legitimate receiver while E goes to the eavesdropper.
We can thus define an (n, R, €) private code as follows.

1. An encoding map E : {0,1}™ — X" by Alice; Alice encodes the index m as E(m) and sends
it through the channel W®", generating the state

1

me{0,1}n

2. A deCOding POVM {Am/}m/€{071}nR;

so that

HTBE —rB ®0EH1 <€, (57)

where TBE is the quantum system after Bob’s decoding operation, and
1
B B
= i X Il
m
E

contains the private classical information that is decoupled from Eve’s state o*.
We say the rate R is achievable if for any €,6 > 0 and sufficiently large n there exists an
(n, R — 0, ¢€) private code. The private capacity P(N) is defined as

P(N) =sup{R : R is achievable}.

Let

I,(N) = In;;%XI(X :B)y —I(X : E),

where
pxa =Y palria|x @ p;.

T

is the input to the channel N generating oxpr = Y, polx)z|x ® Na_pe(pd).

Theorem 46 (Private Capacity [Dev05])

. 1 ®n
PWN) = nh_)rgo EIP(N ).
Direct Coding Theorem.

Fix ¢, > 0 and a sufficiently large n. Consider the ensemble {p,n,c5E} of the channel
output W®", There exists an encoding map E : (M,S) — X" for Alice, where X" € X" is
i.i.d. with distribution p, M represents the private classical message taken values from {0,1}",
and S represents the bits with value taken from {0,1}"#s that needs to be sacrificed in order to
blind eavesdropper’s information about the private messages.
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First, we invoke the HSW theorem (direct coding theorem of Theorem . There exists a code
C = {XE(m,s)}(m,s)e2nr; Where 7 := R+ Ry = I(X : B) —2(c+ ¢/§)d so that

E[p(C)] < e.

For each m ¢ {0,1}"%, define C,, = {XE(m,s) }se[onrs), where Cy, works as a covering code.
Choose Ry = I(X : E) + 3cS. For any m € {0,1}"%, define the logic statement £, by oe(C,,) <
3e + 194/, where

0e(Cp) =

)

1

E E
27LR5 Z O-XE(m,s) g

S

1
where

O’E = g pmngfn
xn

and 0%, = Trp oBF. By Corollary Vm,

3
Pr{not ¢,,} <2|dg|" exp (—4;22”66> . (58)

The probability of can be made < €27 for some R when n is sufficient large since the
right-hand side is a double exponential in n.

Define the logic statement ¢y by {p.(C) < v/e}. By the Markov inequality, Pr{not ¢y} < \/e.
By the union bound,

onR

Pr{not (bo Alx A=+ Nl } < ZPr{not 0} < e+ e,
=0

where A means the logic operator “AND”. Hence there exists a specific choice of {X E(ms)}, say
{ZE(m,s)}, for which all these conditions are satisfied.
Denote by YBE the state after Bob’s POVM measurement and

- 1 1
BE __ B B
m S

Consequently,

ITPF — 7% @ oy < ITPP = TFF (L + |TFF — 77 @ 0P|
< 4e + 204/,

as claimed in (57]).
|

Converse. We use the same trick. We consider the task of secret-key generation, where Alice
prepares @y of size 2%, She then encodes M’ before sending through the channel /. Bob
performs his POVM on the channel output

OMBE = 27"RZ [m)m|y @ o "
m

23



yielding the state w,,y,» so that

HWMME — ‘i’MM’ ®0EnH1 <e

The above condition guarantees

We have

I(M: E™), <ne. (59)
nR = I(M:M)g
< I(M: M), + né
< I(M:B")y +né
< I(M:B")y —I(M:E")y +2n¢é
< L,(N®") 4 ne,

where the second line uses continuity of mutual information; the third line uses data processing
inequality; the fourth lines follows from Eq. ; the last line follows from the definition of I,,.
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