Quantum Information Theory

Min-Hsiu Hsieh

University of Technology Sydney, Australia

October 30, 2015

Contents

1	Quantum States and Channels	1
2	Toolbox	6
3	Source Coding: Schumacher Compression	9
4	Channel Coding: HSW Theorem	11
5	Entanglement-assisted Classical Coding	15
6	Private Coding	19

1 Quantum States and Channels

	Classical	Quantum
Source	Probability vector	Density operators
	$P_X(x)$	$\rho_A \geq 0 \in \mathbb{C}^{d_A \times d_A}$, and $\operatorname{Tr} \rho_A = 1$
Channel	$p_{Y X}$	CPTP map
Channel		Measurement $\Lambda: \mathcal{Q} \to \mathcal{C}$
Entropy	$H(X) = -\sum p_X(x) \log p_X(x)$	$H(A) = -\operatorname{Tr} \rho_A \log \rho_A$
Conditional	H(Y X) = H(XY) - H(X)	$H(A B)_{\rho} = H(AB) - H(B)$
Entropy		
Mutual	I(X:Y) = H(X) - H(X Y)	$I(A:B)_{\rho} = H(A) - H(A B)$
Information		
Conditional	I(X:Y Z) = I(X:YZ) - I(X Z)	$I(A:B C)_{\rho} = I(A:BC) - I(A C)$
MI		

Quantum State:

For a d-dimensional Hilbert Space \mathcal{H}_d , we fix the computational basis $\{|1\rangle, \ldots, |d\rangle\}$ in it, where $|i\rangle = (0, \cdots, 0, 1, 0, \cdots, 0)^T$. A d-dimensional pure quantum system can be mathematically described

by a unit-length vector

$$|\psi\rangle = \sum_{i=1}^{d} \alpha_i |i\rangle,$$

where $\alpha_i \in \mathbb{C}$ and $\sum_{i=1}^d |\alpha_i|^2 = 1$. We use the convention that the ket notation $|\psi\rangle$ is a column vector, and the bra notation $\langle \psi | := |\psi\rangle^{\dagger}$ is a row vector (from complex conjugate and transpose of $|\psi\rangle$). However, a quantum system can be *mixed*. A mixed quantum state ρ can be mathematically described as a density operator in $\mathbb{C}^{d \times d}$, namely, it is a Hermitian (self-adjoint) matrix so that $\rho \geq 0$ and $\operatorname{Tr} \rho = 1$. It is easy to verify that when ρ is rank one, $\rho = |\psi\rangle\langle\psi|$ for some $|\psi\rangle \in \mathcal{H}_d$. Therefore, a quantum system ρ is pure if and only if its $\operatorname{rank}(\rho) = 1$. Otherwise, it is mixed. We denote by $\mathcal{D}(\mathcal{H}_d) = \{\rho : \rho \geq 0, \operatorname{Tr} \rho = 1\}$ the set of density operators defined on \mathcal{H}_d .

Exercise 1 Show that $Tr[\rho^2] = 1$ if and only if ρ is pure. If ρ is mixed, then $Tr[\rho^2] < 1$.

For any quantum system $\rho \in \mathcal{D}(\mathcal{H}_d)$ with rank κ , we can always decompose (by spectral decomposition)

$$\rho = \sum_{j=1}^{\kappa} \mu_j |E_j\rangle\langle E_j|$$

where $\mu_j \geq 0$ are eigenvalues of ρ with eigenvectors $|E_j\rangle$. Since $\operatorname{Tr} \rho = 1$, we have $\sum_{j=1}^{\kappa} \mu_j = 1$.

Entanglement:

We define a bipartite pure quantum system $|\psi\rangle\langle\psi|_{AB} \in \mathcal{D}(\mathcal{H}_{d_A} \otimes \mathcal{H}_{d_B})$, where \otimes denotes the tensor product. We can think of the quantum state $|\psi\rangle_{AB}$ held by two parties (we often call them Alice (A) and Bob(B) in the quantum regime) whose local spaces are \mathcal{H}_{d_A} and \mathcal{H}_{d_B} , respectively. Since $\{|i\rangle_A \otimes |j\rangle_B\}$ forms an othornormal basis for the Hilbert space $\mathcal{H}_{d_A} \otimes \mathcal{H}_{d_B}$, we can write

$$|\psi\rangle_{AB} = \sum_{i=1}^{d_A} \sum_{j=1}^{d_B} \alpha_{ij} |i\rangle_A \otimes |j\rangle_B$$

where $\alpha_{ij} \in \mathbb{C}$ and $\sum_{i=1}^{d_A} \sum_{j=1}^{d_B} |\alpha_{ij}|^2 = 1$.

Exercise 2 The quantum state ρ_A held by Alice when ignoring the other party Bob is defined

$$\rho_A := \operatorname{Tr}_B |\psi\rangle\langle\psi|_{AB} = \sum_{i \ i'=1}^{d_A} \beta_{ii'} |i\rangle\langle i'|,$$

where Tr_B is the partial trace on \mathcal{H}_{d_B} . Compute the exact expression of $\beta_{ii'}$ in terms of α_{ij} .

A pure state $|\psi\rangle_{AB}$ is *entangled* if and only if it cannot be written as tensor product of two pure states: $|\psi\rangle_{AB} \neq |\phi\rangle_A \otimes |\phi\rangle_B$ for any $|\phi\rangle_A \in \mathcal{H}_{d_A}$ and $|\phi\rangle_B \in \mathcal{H}_{d_B}$.

Exercise 3 Define the maximally entangled state (or an ebit) to be

$$|\Phi_{+}\rangle_{AB} = \frac{1}{\sqrt{2}} \left(|00\rangle_{AB} + |11\rangle_{AB} \right). \tag{1}$$

Verify that $|\Phi_{+}\rangle_{AB}$ is entangled.

For a general quantum state $\rho_{AB} \in \mathcal{D}(\mathcal{H}_{d_A} \otimes \mathcal{H}_{d_B})$, we say it is a *separable* state if and only if

$$\rho_{AB} = \sum_{k} p_k \rho_A^{(k)} \otimes \rho_B^{(k)}, \tag{2}$$

for some $\rho_A^{(k)} \in \mathcal{D}(\mathcal{H}_{d_A})$, $\rho_B^{(k)} \in \mathcal{D}(\mathcal{H}_{d_B})$, $\alpha_k \in \mathbb{R}$, and $\sum_k p_k = 1$. If ρ_{AB} is not separable, then it is entangled.

Quantum Ensemble:

A quantum ensemble is a collection of n quantum states $\rho_B^x \in \mathcal{D}(\mathcal{H}_B)$ with probability p_x , where $\sum_{x=1}^n p_x = 1$, and is denoted by $\mathcal{E} = \{p_x, \rho_B^x\}_{x=1}^n$. Equivalently, we can relate \mathcal{E} to a classical-quantum state σ_{XB} :

$$\sigma_{XB} := \sum_{x=1}^{n} p_x |x\rangle \langle x|_X \otimes \rho_B^x, \tag{3}$$

where $\{|x\rangle_X\}_{x=1}^n$ denotes the computational basis in the auxiliary system X. The system X can be viewed as the classical labels of the corresponding quantum states.

Exercise 4 Verify that the classical-quantum state σ_{XB} in Eq. (3) is not an entangled state between systems X and B.

Exercise 5 Denote $|+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|-\rangle := \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$. Let $\mathcal{E} = \{(1/2, |+\rangle), (1/2, |-\rangle)\}$. Write down the classical-quantum state σ_{XB} of the quantum ensemble \mathcal{E} in the matrix form.

Measurement:

A measurement is a device that reads out classical messages from a quantum system. It can be mathematically described by $\mathbf{A} := \{A_i\}_{i=1}^n$ of measurement operators (i.e. linear operators in \mathcal{H}) so that

$$\sum_{i=1}^{n} A_i^{\dagger} A_i = I,$$

where I is the identity operator in \mathcal{H} . The outcome j after measuring the quantum state ρ with A happens with probability

$$p_j = \operatorname{Tr} A_j \rho A_j^{\dagger},$$

and the resulting quantum state is

$$\rho' = \frac{1}{p_j} A_j \rho A_j^{\dagger}.$$

Exercise 6 Show that $\sum_{j=1}^{n} p_j = 1$.

If we do not care about the post-measurement quantum state, we can use the positive operator-valued measures (POVM) formalism. A POVM Λ with n measurement outcomes consists of $\{\Lambda_i\}_{i=1}^n$ where each $0 \leq \Lambda_i \leq I$ and $\sum_i \Lambda_i = I$. Applying the measurement Λ on a quantum state ρ will yield outcome k with probability

$$p_k = \text{Tr}[\Lambda_k \rho].$$

Note that the set of projectors $\{\Pi_i := |i\rangle\langle i|\}_{i=1}^d$ is a special case of a POVM measurement.

Exercise 7 The POVM measurement Λ and general measurement \mathbf{A} can be related as follows. For a measurement \mathbf{A} , we can construct elements of POVM measurement

$$\Lambda_i = A_i^{\dagger} A_i$$
.

For a POVM measurement Λ , there exists a unitary U so that

$$A_i = U\sqrt{\Lambda_i}$$
.

For a quantum ensemble $\mathcal{E} = \{p_i, \rho_i\}_{i=1}^n$ and a POVM $\Lambda = \{\Lambda_i\}_{i=1}^n$, define the successful probability of identifying the classical messages in \mathcal{E} by

$$P_c(\mathcal{E}, \Lambda) := \sum_{i=1}^n p_i \operatorname{Tr}[\rho_i \Lambda_i].$$

Exercise 8 Let $\mathcal{E} = \{(1/2, |+\rangle), (1/2, |-\rangle)\}$. Design a POVM Λ so that $P_c(\mathcal{E}, \Lambda) = 1$.

Quantum Channels:

A most general quantum channel (or operation) $\mathcal{N} : \mathcal{D}(\mathcal{H}_A) \mapsto \mathcal{D}(\mathcal{H}_B)$ is a completely positive and trace-preserving (CPTP) map:

$$\mathcal{N}_{A\to B} \otimes \mathrm{id}_R(|\psi_{\rho}\rangle\langle\psi_{\rho}|_{AR}) = \sigma_{BR} \in \mathcal{D}(\mathcal{H}_B \otimes \mathcal{H}_R)$$

for any quantum state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ and any auxiliary purification system R with purification $|\psi_{\rho}\rangle_{AR}$ (i.e. $\operatorname{Tr}_R |\psi_{\rho}\rangle\langle\psi_{\rho}|_{AR} = \rho_A$).

Exercise 9 For a quantum system $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ with rank κ : $\rho = \sum_{j=1}^{\kappa} \mu_j |E_j\rangle\langle E_j|$, we can always purify ρ as follows:

$$|\psi_{\rho}\rangle_{AR} = \sum_{j=1}^{\kappa} \sqrt{\mu_j} |E_j\rangle_A \otimes |j\rangle_R \tag{4}$$

where $\{|i\rangle_R\}$ are orthonormal vectors in \mathcal{H}_R . We call such a purification canonical. Verify $\operatorname{Tr}_R \psi_{\rho_{AR}} = \rho_A$.

Show that the purification is not unique in the sense that there exists other pure state $|\phi_{\rho}\rangle_{AR}$ so that $\operatorname{Tr}_R \phi_{\rho_{AR}} = \rho_A$.

A quantum channel \mathcal{N} can be equivalently represented by the Kraus representation:

$$\mathcal{N}(\rho) = \sum_{j=1} A_j \rho A_j^{\dagger},$$

where $\{A_j\}$ are the Kraus operators of the channel \mathcal{H} satisfying $\sum_j A_j^{\dagger} A_j = I$.

Exercise 10 Show that a classical channel $p_{Y|X}(y|x)$ acting on a classical input $p_X(x)$ with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ can be described as a special case of a quantum channel \mathcal{N} on a density operator ρ . Express the Kraus operators of \mathcal{N} in terms of $p_{Y|X}(y|x)$ and the density operator ρ in terms of $p_X(x)$.

A closed quantum system evolves according to a unitary. Hence a noisy quantum evolution (a quantum channel) \mathcal{N} on $\rho \in \mathcal{D}(\mathcal{H}_A)$ can be considered as:

$$\mathcal{N}(\rho) = \text{Tr}_E[U(\rho \otimes |0\rangle\langle 0|_E)U^{\dagger}]$$

where U is a unitary evolution on system $\mathcal{H}_A \otimes \mathcal{H}_E$. This relation allows us to construct Kraus operators $\{A_j := \langle j|_E U|0\rangle_E\}$.

Exercise 11 Define a quantum erasure channel with probability ε :

$$\mathcal{N}_e(\rho) = (1 - \varepsilon)\rho + \varepsilon |e\rangle\langle e|$$

where $|e\rangle\langle e|\perp\rho$. Construct Kraus operators $\{A_j\}$ for \mathcal{N}_e .

We can construct a measurement map $\mathcal{E}_{\Lambda}: A \to AX$ associated with a measurement $\{\Lambda_i\}_{i=1}^n$ as follows:

$$\mathcal{E}_{\Lambda}(
ho_A) = \sum_{i=1}^n \Lambda_i
ho \Lambda_i \otimes |i\rangle \langle i|_X.$$

Entropic Measures:

Define the von Neumann entropy of a quantum state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ to be

$$H(\rho_A) = H(A)_{\rho} := -\operatorname{Tr} \rho_A \log \rho_A.$$

Let the spectral decomposition of ρ be

$$\rho_A = \sum_{x \in \mathcal{X}} p_x |x\rangle \langle x|_A.$$

Then $H(A)_{\rho} = \sum_{x \in \mathcal{X}} -p_x \log p_x := H(X)$, where H(X) is the Shannon entropy of a random variable X whose distribution is $\Pr(X = x) = p_x$.

Exercise 12 Show that $H(\rho) = 0$ if and only if ρ is pure.

Exercise 13 Show that $H(\rho) = \log d$ if and only if ρ is a completely mixed state I/d in \mathcal{H}_d .

The quantum conditional entropy of a bipartite quantum state ρ_{AB} is defined as

$$H(A|B)_{\rho} = H(AB)_{\rho} - H(B)_{\rho},$$

where $H(B)_{\rho}$ is the von Neumann entropy of the reduced density operator $\rho_B = \text{Tr}_A \, \rho_{AB}$.

Exercise 14 Show that the quantum conditional entropy of a pure entangled state $|\psi\rangle_{AB}$ is negative.

The quantum mutual information $I(A:B)_{\rho}$ of a quantum state ρ_{AB} is defined as

$$I(A:B)_{o} := H(A)_{o} - H(A|B)_{o}$$

Lemma 15 (Data Processing Inequality) Let $\sigma_{BR} = \mathcal{N}_{A \to B}(\rho_{AR})$. Then

$$I(B:R)_{\sigma} \leq I(A:R)_{\rho}$$
.

The conditional quantum mutual information $I(A:B|C)_{\rho}$ of a quantum state ρ_{ABC} is defined as

$$I(A:B|C)_{\rho} := H(A|C)_{\rho} - H(A|BC)_{\rho}.$$

Exercise 16 (very hard) Show that $I(A:B|C)_{\rho} \geq 0$ for any ρ_{ABC} . This is the so-called strong subadditivity.

2 Toolbox

Quantum Typicality

In this section, we will fix the distribution p_x on \mathcal{X} . Let $x^n := x_1 x_2 \cdots x_n$, where $x_i \in \mathcal{X}$ for each i. Let $N(x|x^n)$ denote the number of occurrences of the symbol x in \mathcal{X} in the sequence x^n . The type t_{x^n} of a sequence x^n is a probability vector whose element

$$t_{x^n}(a) = \frac{1}{n} N(a|x^n) \quad \forall a \in \mathcal{X}.$$

Define the set of sequences of type t by

$$\mathcal{T}_t^n = \{x^n : t_{x^n} = t\}.$$

Let

$$\tau_{\delta} = \{t : \forall a \in \mathcal{X}, |t_a - p_a| \le \delta\}.$$

Define the δ -typical set $T_{\delta,X}^n$ be

$$T_{\delta,X}^n = \left\{ x^n : \forall a \in \mathcal{X}, \left| \frac{1}{n} N(a|x^n) - p_a \right| \le \delta \right\}$$

= $\bigcup_{t \in \tau_{\delta}} \mathcal{T}_t^n$.

Lemma 17 For any $\epsilon, \delta > 0$ and n sufficiently large,

- $\Pr\{X^n \in \mathcal{T}^n_{\delta,X}\} \ge 1 \epsilon$.
- $|\mathcal{T}_{\delta,X}^n| \leq 2^{n[H(X)+c\delta]}$ for some contant c.
- $2^{-n[H(X)+c\delta]} \le \Pr(x^n) \le 2^{-n[H(X)-c\delta]}, \forall x^n \in \mathcal{T}_{\delta,X}^n$.

Exercise 18 Prove Lemma 17.

Recall that a density operator can be written in terms of

$$\rho = \sum_{x \in \mathcal{X}} p_x |x\rangle \langle x|.$$

The eigenvalues $\{p_x\}$ form a probability distribution (of a random variable X) so that we can define typical sequences and so on. Moreover

$$H(\rho) = H(p) = H(X).$$

Thus, we can define the type projector

$$\Pi_t^n = \sum_{x^n \in \mathcal{T}_t^n} |x^n\rangle \langle x^n|,$$

and the δ -typical projector

$$\Pi_{\delta,\rho}^n = \sum_{x^n \in \mathcal{T}_{\delta,X}^n} |x^n\rangle \langle x^n| = \sum_{t \in \tau_{\delta}} \Pi_t^n.$$

Exercise 19 For $t \in \tau_{\delta}$, prove that

$$|\Pi_t^n| \ge 2^{n[H(\rho) - \eta(\delta)]}$$

where $\eta(\delta) \to 0$ as $\delta \to 0$.

Lemma 20 For any $\epsilon, \delta > 0$ and n sufficiently large,

- Tr $\rho^{\otimes n} \Pi_{\delta,\rho}^n \geq 1 \epsilon$.
- $|\Pi_{\delta,\rho}^n| = \operatorname{Tr} \Pi_{\delta,\rho}^n \leq 2^{n[H(\rho)+c\delta]}$ for some contant c.
- $\bullet \ 2^{-n[H(\rho)+c\delta]} \Pi^n_{\delta,\rho} \leq \Pi^n_{\delta,\rho} \rho^{\otimes n} \Pi^n_{\delta,\rho} \leq 2^{-n[H(\rho)-c\delta]} \Pi^n_{\delta,\rho}.$

Exercise 21 Prove Lemma 20.

For any sequence $x^n \in \mathcal{T}^n_{\delta,X}$, we can permute x^n into

$$\pi(x^n) := x_{\uparrow} = (1, \dots, 1, \dots, |\mathcal{X}|, \dots, |\mathcal{X}|).$$

where the number of occurrences of symbol a is $m_a := N(a|x^n)$. We can then define the conditional typical projector $\Pi_{\delta,\rho}^n(x_{\uparrow})$

$$\Pi_{\delta,\rho}^n(x_{\uparrow}) = \Pi_{\delta,\rho_1}^{m_1} \otimes \Pi_{\delta,\rho_2}^{m_2} \otimes \cdots \otimes \Pi_{\delta,\rho_{|\mathcal{X}|}}^{m_{|\mathcal{X}|}},$$

where each typical projector $\Pi_{\delta,\rho_i}^{m_i}$ of ρ_i satisfies $\operatorname{Tr} \Pi_{\delta,\rho_i}^{m_i} \rho_i^{\otimes m_i} \geq 1 - |\mathcal{X}|^{-1} \epsilon$. Since $x^n \in \mathcal{T}_{\delta,X}^n$, $m_i \approx np_i$. Therefore, there exists n large enough so that $\Pi_{\delta,\rho_i}^{m_i}$, $\forall i$, are typical projectors.

We can then define the conditional typical projector for $\rho_{x^n} := \rho_{x_1} \otimes \cdots \otimes \rho_{x_n}$ as follows:

$$\Pi_{\delta,\rho_{x^n}}^n = U_{\pi} \Pi_{\delta,\rho}^n(x_{\uparrow}) U_{\pi}^{\dagger},$$

where U_{π} is the unitary permuting the corresponding Hilbert spaces:

$$U_{\pi}\rho_{x\uparrow}U_{\pi}^{\dagger}=\rho_{x^{n}}.$$

Lemma 22 For any $\epsilon, \delta > 0$ and n sufficiently large,

- $\operatorname{Tr} \rho_{x^n} \Pi^n_{\delta, \rho_{x^n}} \ge 1 \epsilon.$
- $|\Pi_{\delta,\rho_{x^n}}^n| \leq 2^{n[H(B|X)+c\delta]}$ for some contant c.
- $\bullet \ 2^{-n[H(B|X)+c\delta]} \Pi^n_{\delta,\rho_{x^n}} \leq \Pi^n_{\delta,\rho_{x^n}} \rho_{x^n} \Pi^n_{\delta,\rho_{x^n}} \leq 2^{-n[H(B|X)-c\delta]} \Pi^n_{\delta,\rho_{x^n}}.$

Exercise 23 Prove Lemma 22.

Distant Measures

I will only introduce one distant measure in this short course. You can find a few others in the literature.

Define the *trace norm* (or the ℓ_1 -norm) of an Hermitian operator A to be:

$$||A||_1 := \operatorname{Tr} \sqrt{A^{\dagger} A}.$$

Exercise 24 Let

$$X = \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & -1/2 \end{array}\right).$$

Compute $||X||_1$.

Proposition 25 The trace norm satisfies

- Faithfulness: $||A||_1 = 0$ if and only if A=0.
- Homogeneity: $||cA||_1 = |c|||A||_1$ for any $c \in \mathbb{C}$.
- Triangle Inequality: $||A + B||_1 \le ||A||_1 + ||B||_1$.

Exercise 26 Let A be any Hermitian operator. Show that

$$||A||_1 = \max_{-I \le \Lambda \le I} \operatorname{Tr} \Lambda A.$$

One of the most commonly used distant measures is called the *trace distance*. The trace distance between two density operators ρ and σ is $\|\rho - \sigma\|_1$.

Lemma 27 (Monotonicity) The trace distance is monotone under cptp maps N:

$$\|\mathcal{N}(\rho - \sigma)\|_1 \le \|\rho - \sigma\|_1 \tag{5}$$

Exercise 28 Show that if the two states ρ and σ commute, then the trace distance is equivalent to the variational distance of two probability distributions.

Exercise 29 Fix a quantum ensemble $\mathcal{E} = \{(p_0, \rho_0), (p_1, \rho_1)\}$. Show that the success probability $P_c(\mathcal{E}) := \max_{\Lambda} P_c(\mathcal{E}, \Lambda)$ is

$$P_c(\mathcal{E}) = \frac{1}{2} + \frac{1}{2} ||p_0 \rho_0 - p_1 \rho_1||_1.$$

Lemma 30 (gentle measurement) Fix a density operator ρ and an operator $0 \le \Lambda \le I$ so that

$$\operatorname{Tr} \Lambda \rho \geq 1 - \epsilon$$
.

Then

$$\|\rho - \sqrt{\Lambda}\rho\sqrt{\Lambda}\|_1 \le 2\sqrt{\epsilon}.$$

Exercise 31 Prove Lemma 30.

Lemma 32 If $\|\rho - \sigma\|_1 \le \epsilon$, then

$$|H(\rho) - H(\sigma)| < 2\epsilon \log d + 2h(\epsilon),$$

where
$$h(x) = -x \log x - (1-x) \log(1-x)$$
.

Lemma 33 If $\|\rho_{AB} - \sigma_{AB}\|_1 \le \epsilon$, then

$$|I(A:B)_{\rho} - I(A:B)_{\sigma}| \le 6\epsilon \log d_A + 4h(\epsilon),$$

where $h(x) = -x \log x - (1-x) \log(1-x)$.

The set of generalized Pauli matrices $\{U_m\}_{m\in[d^2]}$ is defined by $U_{l\cdot d+k}=\hat{Z}_d(l)\hat{X}_d(k)$ for $k,l=0,1,\cdots,d-1$ and

$$\hat{X}_d(k) = \sum_s |s\rangle\langle s+k| = \hat{X}_d(1)^k,$$

$$\hat{Z}_d(l) = \sum_s e^{i2\pi sl/d} |s\rangle\langle s| = \hat{Z}_d(1)^l.$$
(6)

The + sign denotes addition modulo d.

We will always use $|\Phi_d\rangle$ to represent the d-dimensional maximally entangled state (subscript will be omitted when the dimension is clear from the context):

$$|\Phi_d\rangle^{AB} = \frac{1}{\sqrt{d}} \sum_{i=1}^d |i\rangle^A |i\rangle^B. \tag{7}$$

We have the following result:

$$\frac{1}{d^2} \sum_{m=1}^{d^2} (U_m \otimes I) \Phi^{AB}(U_m^{\dagger} \otimes I) = \pi^A \otimes \pi^B, \tag{8}$$

where $\pi^A = \pi^B = \frac{I}{d}$.

Exercise 34 Prove Eq. (8).

We will also need the following equality:

$$(I \otimes U)|\Phi\rangle = (U^{tr} \otimes I)|\Phi\rangle \tag{9}$$

for any operator U, and U^{tr} denotes transposition of U.

Exercise 35 Prove Eq. (9).

3 Source Coding: Schumacher Compression

For a quantum source $\rho_A \in \mathcal{H}_A$ with purification $|\psi^{\rho}\rangle_{AR}$, we define an (n, R, ϵ) source code by

- compression operation $\mathcal{E}: \mathcal{H}_d^{\otimes n} \mapsto \mathcal{H}_{2^{nR}};$
- decompression operation $\mathcal{D}: \mathcal{H}_{2^{nR}} \mapsto \mathcal{H}_d^{\otimes n}$

so that

$$\|(\psi_{AB}^{\rho})^{\otimes n} - \mathcal{D} \circ \mathcal{E} ((\psi_{AB}^{\rho})^{\otimes n})\|_{1} \leq \epsilon.$$

We call R is achievable if for any $\delta, \epsilon > 0$, there exists an $(n, R + \delta, \epsilon)$ source code. Define $C(\rho) = \inf\{R : R \text{ is achievable}\}.$

Theorem 36 (Quantum Data Compression [Sch95])

$$C(\rho) = H(\rho)$$
.

Direct Coding Theorem. Let the spectral decomposition of $\rho = \sum_{x \in \mathcal{X}} p_x |x\rangle\langle x|$. Shorthand $\psi_{AR}^n \equiv (\psi_{AR}^\rho)^{\otimes n}$, $\Pi_0 \equiv \Pi_{\delta,\rho}^n$ and $\Pi_1 \equiv I - \Pi_{\delta,\rho}^n$. Note that $\{\Pi_0, \Pi_1\}$ forms a projective measurement. We can construct the compression operator \mathcal{E} as the composition of the following operations:

$$\mathcal{E}_1(\rho^{\otimes n}) := \sigma_1 = \Pi_0 \rho^{\otimes n} \Pi_0 \otimes |0\rangle \langle 0|_X + \Pi_1 \rho^{\otimes n} \Pi_1 \otimes |1\rangle \langle 1|_X$$
$$\mathcal{E}_2(\sigma_1) := \sigma_2 = \Pi_0 \rho^{\otimes n} \Pi_0 \otimes |0\rangle \langle 0|_X + \operatorname{Tr}(\Pi_1 \rho^{\otimes n})| \perp \rangle \langle \perp | \otimes |1\rangle \langle 1|_X.$$

The decompression operation \mathcal{D} simply discards the classical system X:

$$\mathcal{D}(\sigma_2) := \sigma = \Pi_0 \rho^{\otimes n} \Pi_0 + \operatorname{Tr}(\Pi_1 \rho^{\otimes n}) | \perp \rangle \langle \perp |.$$

We can verify that

$$\|\psi_{AR}^{n} - \mathcal{D} \circ \mathcal{E}(\psi_{AR}^{n})\|_{1} \leq \|\psi_{AR}^{\rho} \otimes |0\rangle\langle 0|_{X} - \mathcal{E}(\psi_{AR}^{n})\|_{1}$$

$$\leq \|(\psi_{AR}^{n} - \Pi_{0}\psi_{AR}^{n}\Pi_{0}) \otimes |0\rangle\langle 0|_{X}\|_{1} + \|\operatorname{Tr}(\Pi_{1}\rho^{\otimes n})\|_{1} + \|(1+\varepsilon)\|_{1}$$

$$\leq 2\sqrt{\epsilon} + \epsilon$$

where the first inequality follows from monotonicity of trace distance (Lemma 27); the second inequality follows from the triangle inequality for trace distance; the third inequality uses the gentle measurement lemma (Lemma 30) and quantum typicality $\operatorname{Tr} \Pi_1 \rho^{\otimes n} \leq \epsilon$.

Converse. For any $(n, R + \delta, \epsilon)$ source code with $\mathcal{E}: A^n \to W$ and $\mathcal{D}: W \to A$ with $|W| = 2^{nR}$, let

$$\omega_{\hat{A}^n R^n} = \mathcal{D}(\sigma_{WA}^n),$$

where

$$\sigma_{WR^n} := \mathcal{E}(\psi_{AR}^n),$$

so that

$$\|\psi_{AB}^n - \omega_{AB}^n\|_1 \le \epsilon.$$

Then

$$2nR \geq |H(W)_{\sigma}| + |H(W|R^{n})_{\sigma}|$$

$$\geq |H(W)_{\sigma} - H(W|R^{n})_{\sigma}|$$

$$= I(W:R^{n})_{\sigma}$$

$$\geq I(\hat{A}^{n}:R^{n})_{\omega}$$

$$\geq I(A^{n}:R^{n})_{\psi} - n\epsilon'$$

$$= 2H(A^{n})_{\phi} - n\epsilon'$$

$$= 2nH(\rho) - n\epsilon'.$$

The fourth line follows from data processing inequality (Lemma 15). The fifth line follows from the continuity of the mutual information (Lemma 33).

10

4 Channel Coding: HSW Theorem

The packing lemma below will prove to be a powerful tool in quantum information theory. The technique used here is simple, directly analogous to the classical coding theorem.

Lemma 37 (Packing [HDW08]) We are given an ensemble $\{\lambda_m, \sigma_m\}_{m \in \mathcal{S}}$ with average density operator

$$\sigma = \sum_{m \in \mathcal{S}} \lambda_m \sigma_m.$$

Assume the existence of projectors Π and $\{\Pi_m\}_{m\in\mathcal{S}}$ with the following properties:

$$\operatorname{Tr} \sigma_m \Pi_m \geq 1 - \epsilon,$$
 (10)

$$\operatorname{Tr} \sigma_m \Pi \geq 1 - \epsilon,$$
 (11)

$$\operatorname{Tr} \Pi_m \leq d,$$
 (12)

$$\Pi \sigma \Pi \leq D^{-1} \Pi \tag{13}$$

for all $m \in \mathcal{S}$ and some positive integers D and d. Let $N = \lfloor \gamma D/d \rfloor$ for some $0 < \gamma < 1$ where $\lfloor r \rfloor$ represents the largest integer less than r. Then there exists a map $f : [N] \to \mathcal{S}$, and a corresponding set of POVMs $\{\Lambda_k\}_{k \in [N]}$ which reliably distinguishes between the states $\{\sigma_{f(k)}\}_{k \in [N]}$ in the sense that

$$\operatorname{Tr} \sigma_{f(k)} \Lambda_k \ge 1 - 4(\varepsilon + \sqrt{8\varepsilon}) - 8\gamma$$

for all $k \in [N]$.

Proof. Let X^N denote a sequence of random variables X_1, X_2, \ldots, X_N , where each random variable X_k takes values from S and is distributed according to λ . Set $f(k) = X_k$. Each random code $C = \{\sigma_{x_k}\}_{k \in [N]}$ is generated according to $X_k = x_k$. Define $p_e(k)$ to be the probability of error for a single codeword σ_{x_k} :

$$p_e(k) = \operatorname{Tr} \sigma_{x_k}(I - \Lambda_k),$$

where the POVM elements $\{\Lambda_k\}$ are constructed by the so-called square root measurement [Hol98, SW97]

$$\Lambda_k = \left(\sum_{l=1}^N \Upsilon_{x_l}
ight)^{-rac{1}{2}} \Upsilon_{x_k} \left(\sum_{l=1}^N \Upsilon_{x_l}
ight)^{-rac{1}{2}}$$

with

$$\Upsilon_m = \Pi \Pi_m \Pi$$
.

Define $p_e(C)$ to be the average probability of error, averaged over all codewords in C:

$$p_e(C) = \frac{1}{N} \sum_{k=1}^{N} p_e(k).$$

Define \bar{p}_e to be the average probability of error, averaged over all possible random codes C to be:

$$\bar{p}_e = \mathbb{E}_{X^N} \left[p_e(C) \right].$$

The idea here is that if the average probability of error \bar{p}_e is small enough, we can then show the existence of at least one good code. In what follows, we will first show that $\bar{p}_e \leq \epsilon'$ for some $\epsilon' \to 0$

when $n \to \infty$.

Invoking Lemma 38, we can now place an upper bound on $p_e(C)$:

$$p_e(C) \le \frac{1}{N} \sum_{k=1}^{N} \left[2(1 - \operatorname{Tr} \sigma_{x_k} \Upsilon_{x_k}) + 4 \sum_{l \ne k} \operatorname{Tr} \sigma_{x_k} \Upsilon_{x_l} \right]. \tag{14}$$

The gentle operator lemma (Lemma 30) and property (11) give

$$\|\Pi \sigma_m \Pi - \sigma_m\| \le \sqrt{8\epsilon}.\tag{15}$$

By property (10) and (15)

$$\operatorname{Tr} \sigma_{m} \Upsilon_{m} \geq \operatorname{Tr} \sigma_{m} \Pi_{m} - \|\Pi \sigma_{m} \Pi - \sigma_{m}\|$$

$$\geq 1 - \epsilon - \sqrt{8\epsilon}.$$
(16)

For $k \neq l$, the random variables X_k and X_l are independent. Thus

$$\mathbb{E}_{X^N} \left[\operatorname{Tr} \sigma_{X_k} \Upsilon_{X_l} \right] = \operatorname{Tr} \left(\Pi \mathbb{E} \sigma_{X_k} \Pi \mathbb{E} \Pi_{X_l} \right)$$

$$\leq D^{-1} \mathbb{E} \operatorname{Tr} \Pi \Pi_{X_l}$$

$$\leq d/D.$$
(17)

The first inequality follows from $\mathbb{E} \sigma_{X_k} = \sigma$ and property (12). The second follows from $\Pi \leq \mathbf{1}$ and property (13). Taking the expectation of (14), and incorporating (16) and (17) gives

$$\bar{p}_e \le 2(\varepsilon + \sqrt{8\varepsilon}) + 4(N-1)d/D,$$

$$\le 2(\varepsilon + \sqrt{8\varepsilon}) + 4Nd/D$$

$$= 2(\varepsilon + \sqrt{8\varepsilon}) + 4\gamma =: \epsilon'.$$
(18)

Two more standard steps are needed.

i) Derandomization. There exists at least one particular value x^N of the string X^N such that this code $C^* = \{\sigma_{x^N}\}$ for which $p_e(C^*)$ is at least as small as the expectation value. Thus

$$p_e(C^*) \le \varepsilon'. \tag{19}$$

ii) Average to maximal error probability. Since

$$p_e(C^*) = \frac{1}{N} \sum_{k \in N} p_e(k) \le \varepsilon',$$

then $p_e(k) \leq 2\varepsilon'$ for at least half the indices k. Throw the others away and redefine f, N and γ accordingly. This further changes the error estimate to $4(\varepsilon + \sqrt{8\epsilon}) + 8\gamma$.

Lemma 38 (Hayashi, Nagaoka [HN03]) For any operators $0 \le S \le 1$ and $T \ge 0$, we have

$$1 - \sqrt{S + T}^{-1} S \sqrt{S + T}^{-1} \le 2(1 - S) + 4T.$$

Classical Communication

For a quantum channel $\mathcal{N}: A \to B$, we define an (n, R, ϵ) channel code by

- an encoding operation $\mathcal{E}: X \equiv \{1, 2, \cdots, 2^{nR}\} \to A;$
- a decoding POVM $\Lambda: B \rightarrow \{1, 2, \cdots, 2^{nR}\} \equiv \widehat{X}$

so that

$$\Pr\{X \neq \widehat{X}\} \le \epsilon.$$

We say that the rate R is *achievable* if for any $\epsilon, \delta > 0$ there exists an $(n, R - \delta, \epsilon)$ channel code. We define the classical capacity over the quantum channel \mathcal{N} :

$$C(\mathcal{N}) = \sup\{R : R \text{ is achievable}\}.$$

Define the Holevo quantity of a quantum channel $\mathcal{N}: A \to B$:

$$\chi(\mathcal{N}) := \max_{\rho} I(X:B)_{\rho}$$

where

$$\rho_{XB} = \sum_{x} p_x |x\rangle\langle x|_X \otimes \mathcal{N}_{A \to B}(\psi_x^A).$$

Denote

$$\chi_r(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} \chi(\mathcal{N}^{\otimes n}).$$

Theorem 39 (HSW theorem [Hol98, SW97])

$$C(\mathcal{N}) = \chi_r(\mathcal{N}).$$

Direct Coding Theorem. Fix any ensemble $\{p_x, \rho_x\}$. We construct a new ensemble $\{p'_{x^n}, \rho_{x^n}\}$, where

$$p'_{x^n} = \begin{cases} \frac{p_{x^n}}{\Pr[\mathcal{T}_{\delta,X}^n]}, & \text{if } x^n \in \mathcal{T}_{\delta,X}^n \\ 0, & \text{otherwise} \end{cases}.$$

It is not hard to verify that

$$||p' - p||_1 \le 2\epsilon.$$

We can now apply packing lemma on the ensemble $S = \{p'_{x^n}, \sigma_{x^n}\}$ to prove the direct coding theorem, where

$$\sigma_{x^n} = \mathcal{N}(\rho_{x_1}) \otimes \mathcal{N}(\rho_{x_2}) \otimes \cdots \otimes \mathcal{N}(\rho_{x_n}).$$

Note that

$$\mathbb{E}[\mathcal{S}] := \bar{\sigma} = \sum_{x^n} p'_{x^n} \sigma_{x^n}.$$

We also have

$$\|\bar{\sigma} - \sigma^{\otimes n}\|_1 \le 2\epsilon$$

where $\sigma := \mathcal{N}(\sum_x p_x \rho_x)$. The projectors of Π and $\{\Pi_m\}$ in the packing lemma are chosen as follows:

$$\Pi \equiv \Pi_{\delta,\sigma}^{n}$$

$$\Pi_{m} \equiv \Pi_{\delta,\sigma_{x^{n}}}^{n}.$$

Then by the properties of (conditional) typical projectors

$$\operatorname{Tr} \Pi_{\delta,\sigma_{x^{n}}}^{n} \sigma_{x^{n}} \geq 1 - \epsilon$$

$$\operatorname{Tr} \Pi_{\delta,\sigma}^{n} \sigma^{\otimes n} \geq 1 - \epsilon$$

$$\operatorname{Tr} \Pi_{\delta,\sigma_{x^{n}}}^{n} \leq 2^{n[H(B|X)_{\sigma} + c\delta]}$$

$$\Pi_{\delta,\sigma}^{n} \bar{\sigma} \Pi_{\delta,\sigma}^{n} \leq (1 - \epsilon)^{-1} 2^{-n[H(B)_{\sigma} - c\delta]} \Pi_{\delta,\sigma}^{n},$$

where

$$d = 2^{n[H(B|X)_{\sigma} + c\delta]}$$

$$D = (1 - \epsilon)^{-1} 2^{-n[H(B)_{\sigma} - c\delta]}.$$

Choosing $N = 2^{n[I(X:B)_{\sigma} - 3c\delta]}$ and $\gamma = 2^{-nc\delta}$. The error probability is

$$p_e \le 2(\epsilon + \sqrt{8\epsilon}) + 4 \times 2^{-nc\delta} \to_{n \to \infty} 0.$$
 (20)

Converse. Here we can use a simple trick. Instead of proving the converse for classical capacity, we prove a converse for common randomness generation. Since classical communication can be used to generate common randomness, hence the capacity of common randomness generation can only be larger than the classical capacity $\mathcal{C}(\mathcal{N})$.

The general protocol for common randomness generation begins with Alice preparing a maximally correlated state

$$\bar{\Phi}_{MM'} = \frac{1}{2^{nR}} \sum_{i=1}^{2^{nR}} |ii\rangle\langle ii|.$$

After her encoding and sending through \mathcal{N} , Bob performs his decoding measurement on the channel output B^n of the sate σ_{MB^n} to recover a state $\omega_{MM'}$ that is ϵ -close to $\bar{\Phi}_{MM'}$:

$$\|\omega_{MM'} - \bar{\Phi}_{MM'}\|_1 \le \epsilon.$$

Then

$$nR = I(M:M')_{\bar{\Phi}}$$

$$\leq I(M:M')_{\omega} + n\epsilon'$$

$$\leq I(M:B^{n})_{\sigma} + n\epsilon'$$

$$\leq \chi(\mathcal{N}^{\otimes n}) + n\epsilon'.$$

The first inequality follows from continuity of mutual information (Lemma 33). The second inequality follows from data processing inequality (Lemma 15). The final inequality follows from the definition of Holevo χ quantity.

5 Entanglement-assisted Classical Coding

We first describe a general entanglement-assisted classical communication protocol. Alice and Bob are connected by a large number n uses of the quantum channel $\mathcal{N}: A' \to B$. Alice controls the channel input system A' and Bob has access to the channel output B. They also have entanglement in the form of n copies of some pure bipartite state $\varphi_{A'B'}$. Any such state is determined upto a local unitary transformation by the local density operator $\rho^{A'} = \operatorname{Tr}_{B'} \varphi_{A'B'}$. Alice and Bob use these resources to communicate, in analogy to superdense coding. Based on her message Alice performs a quantum operation on her share of the entanglement. She then sends it through the quantum channel. Bob performs a decoding measurement on the channel output plus his share of the entanglement. They endeavor to maximize the communication rate.

We define an (n, R, ε) entanglement-assisted code by

- a set of unitary encoding maps $\{\mathcal{E}_k\}_{k\in[2^{nR}]}$ acting on $A'^n:=A'_1\ldots A'_n$ for Alice;
- Bob's decoding measurement $\Lambda = {\Lambda_k}_{k \in [2^{nR}]}$ acting on $B^n B^n$.

such that for all $k \in [2^{nR}]$

$$\operatorname{Tr}[\Lambda_k((\mathcal{N}^{\otimes n} \circ \mathcal{E}_k) \otimes I)(\varphi^{\otimes n})] \geq 1 - \epsilon.$$

We say that the rate R is achievable if for any $\epsilon, \delta > 0$ there exists an $(n, R - \delta, \epsilon)$ entanglement-assisted code. Define the entanglement-assisted classical capacity of a channel \mathcal{N}

$$C_{\text{ea}}(\mathcal{N}) = \sup\{R : R \text{ is achievable.}\}.$$

Define

$$I(\mathcal{N}_{A'\to B}) = \max_{\varphi_{AA'}} I(A:B)_{\sigma}$$

where $\sigma_{AB} = \mathcal{N}(\varphi_{AA'})$.

Theorem 40 (Entanglement-assisted Capacity [BSST02])

$$C_{ea}(\mathcal{N}) = I(\mathcal{N}).$$

Direct Coding Theorem. The proof can be done using the packing lemma. However, it requires further manipulation. The following proof comes from [HDW08].

Let the size of distinct types be T, and t_1, \ldots, t_T be an ordering of the types t_{x^n} . For each type t_{α} , we denote the size of its type class $d_{\alpha} = |\mathcal{T}^n_{t_{\alpha}}|$, and denote its type projector $\Pi^n_{t_{\alpha}}$. Define $|\Phi_{\alpha}\rangle$ to be the maximally entangled state on a pair of d_{α} -dimensional quantum systems A'^n and B'^n

$$|\Phi_{\alpha}\rangle_{A^{\prime n}B^{\prime n}} = \frac{1}{\sqrt{d_{\alpha}}} \sum_{x^n \in \mathcal{T}_{t_{\alpha}}^n} |x^n\rangle_{A^{\prime n}} |x^n\rangle_{B^{\prime n}}.$$
 (21)

The maximally mixed state

$$\pi_{\alpha} = \frac{1}{d_{\alpha}} \Pi_{t_{\alpha}}^{n}.$$

Note that Alice and Bob's preshared entangled state admits the following decomposition:

$$|\varphi\rangle^{\otimes n} := |\Psi\rangle_{A'^n B'^n} = \sum_{\alpha} \sqrt{p_{\alpha}} |\Phi_{\alpha}\rangle,$$
 (22)

where $p_{\alpha} = \sum_{x^n \in \mathcal{T}_{t_{\alpha}}^n} p_{x^n}$. The distinct types induce a decomposition of the Hilbert space $\mathcal{H}^{\otimes n}$ of A'^n (correspondingly of B'^n) into a direct sum

$$\mathcal{H}^{\otimes n} = \bigoplus_{\alpha=1}^T \mathcal{H}_{t_\alpha}.$$

Let $\mathcal{G} = \{(g_1, g_2, \dots, g_T) : g_{\alpha} \in \{1, \dots, d_{\alpha}^2\}, \alpha \in \{1, \dots, T\}\}, \mathcal{B} = \{(b_1, b_2, \dots, b_T) : b_{\alpha} \in \{0, 1\}\},$ and $\mathcal{S} = \mathcal{G} \times \mathcal{B}$. Every element $\vec{s} \in \mathcal{S}$ is uniquely determined by $\vec{g} \in \mathcal{G}$ and $\vec{b} \in \mathcal{B}$. Define a unitary operation $U_{\vec{s}}$ for each $\vec{s} \in \mathcal{S}$ to be

$$U_{\vec{s}} \equiv U_{\vec{g},\vec{b}} = \bigoplus_{\alpha=1}^{T} (-1)^{b_{\alpha}} U_{g_{\alpha}}$$

$$\tag{23}$$

where $\{U_{g_{\alpha}}\}$ are the d_{α}^2 generalized Pauli operators (6) defined on $\mathcal{H}_{t_{\alpha}}$. Define

$$\sigma_{\vec{s}}^{B^n B'^n} := (\mathcal{N}^{\otimes n} \otimes I) \left[(U_{\vec{s}} \otimes I) \Psi_{A'^n B'^n} (U_{\vec{s}}^{\dagger} \otimes I) \right]$$

$$= (I \otimes U_{\vec{s}}^{tr}) \theta^{\otimes n} (I \otimes U_{\vec{s}}^*),$$
(24)

where

$$\theta = \mathcal{N}(\varphi_{A'B'}).$$

The last equality follows from (9).

Consider the ensemble $\{1/|\mathcal{S}|, \sigma_{\vec{s}}\}_{\vec{s} \in \mathcal{S}}$. Let σ be the average state of the ensemble, then

$$\sigma = \frac{1}{|\mathcal{S}|} \sum_{\vec{s} \in \mathcal{S}} \sigma_{\vec{s}}$$

$$= \frac{1}{|\mathcal{B}||\mathcal{G}|} \sum_{\vec{g} \in \mathcal{G}} \sum_{\vec{b} \in \mathcal{B}} \sum_{\alpha, \alpha'} \sqrt{p_{\alpha} p_{\alpha'}} (\mathcal{N}^{\otimes n} \otimes I) \left[(U_{\vec{g}, \vec{b}} \otimes I) | \Phi_{\alpha} \rangle \langle \Phi_{\alpha'} | (U_{\vec{g}, \vec{b}}^{\dagger} \otimes I) \right]. \tag{25}$$

$$= \sum_{\alpha} p_{\alpha} \left(\mathcal{N}^{\otimes n} (\pi_{\alpha}^{n}) \otimes \pi_{\alpha}^{n} \right).$$

The last equality comes from (26) and (27) below. When $\alpha = \alpha'$,

$$\frac{1}{|\mathcal{B}||\mathcal{G}|} \sum_{\vec{g} \in \mathcal{G}} \sum_{\vec{b} \in \mathcal{B}} p_{\alpha}(\mathcal{N}^{\otimes n} \otimes I) \left[(U_{\vec{g}, \vec{b}} \otimes I) \Phi_{\alpha}(U_{\vec{g}, \vec{b}}^{\dagger} \otimes I) \right]
= (\mathcal{N}^{\otimes n} \otimes I) \frac{1}{|\mathcal{G}|} \sum_{g_{1}} \cdots \sum_{g_{T}} p_{\alpha}(U_{g_{\alpha}} \otimes I) \Phi_{\alpha}(U_{g_{\alpha}}^{\dagger} \otimes I)
= (\mathcal{N}^{\otimes n} \otimes I) p_{\alpha}(\pi_{\alpha}^{n} \otimes \pi_{\alpha}^{n}).$$
(26)

The last equality follows from (8). When $\alpha \neq \alpha'$, we get (27):

$$\frac{1}{|\mathcal{B}||\mathcal{G}|} \sum_{\vec{g} \in \mathcal{G}} \sum_{\vec{b} \in \mathcal{B}} \sqrt{p_{\alpha} p_{\alpha'}} (\mathcal{N}^{\otimes n} \otimes I) \left[(U_{\vec{g}, \vec{b}} \otimes I) |\Phi_{\alpha}\rangle \langle \Phi_{\alpha'} | (U_{\vec{g}, \vec{b}}^{\dagger} \otimes I) \right]$$

$$= \frac{1}{d_{\alpha}^{2} d_{\alpha'}^{2}} \sqrt{p_{\alpha} p_{\alpha'}} \sum_{b_{\alpha} b_{\alpha'}} \frac{(-1)^{b_{\alpha} + b_{\alpha'}}}{4} \left\{ \sum_{g_{\alpha} g_{\alpha'}} (\mathcal{N}^{\otimes n} \otimes I) \left[(U_{g_{\alpha}} \otimes I) |\Phi_{\alpha}\rangle \langle \Phi_{\alpha'} | (U_{g_{\alpha'}}^{\dagger} \otimes I) \right] \right\}$$

$$= 0. \tag{27}$$

Define the projectors on B'^nB^n

$$\Pi_{\vec{s}} := (I \otimes U_{\vec{s}}^{tr}) \Pi_{\delta,\theta}^{n} (I \otimes U_{\vec{s}}^{*}), \tag{28}$$

$$\Pi := \Pi^n_{\delta,\mathcal{N}(\rho)} \otimes \Pi^n_{\delta,\rho}. \tag{29}$$

For all $\epsilon > 0, \delta > 0$ and all sufficiently large n,

$$\operatorname{Tr} \sigma_{\vec{s}} \Pi_{\vec{s}} \geq 1 - \epsilon$$
 (30)

$$\operatorname{Tr} \sigma_{\vec{s}} \Pi \geq 1 - \epsilon$$
 (31)

$$\operatorname{Tr} \Pi_{\vec{s}} \leq 2^{n[H(AB)_{\theta} + c\delta]} \tag{32}$$

$$\Pi \sigma \Pi \leq 2^{-n[H(A)_{\theta} + H(B)_{\theta} - c\delta]} \Pi. \tag{33}$$

Let $\lambda_{\vec{s}} = \frac{1}{|S|}$ and $R = I(A:B)_{\theta} - (2c+1)\delta$. We now apply the packing lemma to the ensemble $\{\lambda_{\vec{s}}, \sigma_{\vec{s}}\}_{\vec{s} \in S}$ and projectors Π and $\Pi_{\vec{s}}$. Thus there exist a map $f:[2^{nR}] \to S$ and a POVM $\{\Lambda_k\}_{k \in [2^{nR}]}$ such that

$$\operatorname{Tr} \sigma_{f(k)} \Lambda_k \ge 1 - \epsilon', \tag{34}$$

with

$$\epsilon' = 4(\epsilon + \sqrt{8\epsilon}) + 16 \times 2^{-n\delta}.$$

Proofs of properties (30)-(33).

I. Eq. (30): By (24) and (28),

$$\operatorname{Tr} \sigma_{\vec{s}} \Pi_{\vec{s}} = \operatorname{Tr} \theta^{\otimes n} \Pi_{\delta, \theta}^{n}$$

$$> 1 - \epsilon.$$
(35)

The last line follows since $\Pi_{\delta,\theta}^n$ is the δ -typical projector of θ .

II. Eq. (31): Shorthand $\check{P} = I - P$. Then

$$\Pi = \Pi^{n}_{\delta, \mathcal{N}(\rho)} \otimes \Pi^{n}_{\delta, \rho}
\geq I \otimes I - I \otimes \check{\Pi}^{n}_{\delta, \rho} - \check{\Pi}^{n}_{\delta, \mathcal{N}(\rho)} \otimes I.$$
(36)

We have

$$\operatorname{Tr} \sigma_{\vec{s}} \Pi$$

$$\geq \operatorname{Tr} \sigma_{\vec{s}} - \operatorname{Tr} \sigma_{\vec{s}} (I \otimes \check{\Pi}_{\delta,\rho}^{n}) - \operatorname{Tr} \sigma_{\vec{s}} (\check{\Pi}_{\delta,\mathcal{N}(\rho)}^{n} \otimes I)$$

$$= 1 - \operatorname{Tr} [\rho^{\otimes n} \check{\Pi}_{\delta,\rho}^{n}] - \operatorname{Tr} [\mathcal{N}(\rho)^{\otimes n} \check{\Pi}_{\delta,\mathcal{N}(\rho)}^{n}]$$

$$\geq 1 - 2\epsilon.$$
(37)

III. Eq. (32): This follows directly from the property of quantum typicality.

$$\operatorname{Tr} \Pi_{\vec{s}} = \operatorname{Tr} \Pi_{\delta,\theta}^n \le 2^{n[H(AB)_{\theta} + c\delta]}. \tag{38}$$

IV. Eq. (33): From Exercise (19), we can bound the density operator π_{α} by

$$\pi_{\alpha} = \frac{\prod_{t_{\alpha}}^{n}}{\operatorname{Tr} \prod_{t_{\alpha}}^{n}} \le 2^{-n[H(\rho) - \eta(\delta)]} \prod_{\delta, \rho}^{n}.$$
(39)

Then

$$\Pi \sigma \Pi = \left(\Pi_{\delta, \mathcal{N}(\rho)}^{n} \otimes \Pi_{\delta, \rho}^{n} \right) \left[\sum_{\alpha} p_{\alpha} (\mathcal{N}^{\otimes n}(\pi_{\alpha}) \otimes \pi_{\alpha}) \right] \left(\Pi_{\delta, \mathcal{N}(\rho)}^{n} \otimes \Pi_{\delta, \rho}^{n} \right) \\
= \sum_{\alpha} p_{\alpha} \left[\left(\Pi_{\delta, \mathcal{N}(\rho)}^{n} \mathcal{N}^{\otimes n}(\pi_{\alpha}) \Pi_{\delta, \mathcal{N}(\rho)}^{n} \right) \otimes \left(\Pi_{\delta, \rho}^{n} \pi_{\alpha} \Pi_{\delta, \rho}^{n} \right) \right] \\
\leq \left(\Pi_{\delta, \mathcal{N}(\rho)}^{n} \mathcal{N}^{\otimes n} \left(\sum_{\alpha} p_{\alpha} \pi_{\alpha} \right) \Pi_{\delta, \mathcal{N}(\rho)}^{n} \right) \otimes \left(2^{-n[H(\rho) - \eta(\delta)]} \Pi_{\delta, \rho}^{n} \right) \\
\leq \left(2^{-n[H(\mathcal{N}(\rho)) - c\delta]} \Pi_{\delta, \mathcal{N}(\rho)}^{n} \right) \otimes \left(2^{-n[H(\rho) - \eta(\delta)]} \Pi_{\delta, \rho}^{n} \right) \\
= 2^{-n[H(\rho) + H(\mathcal{N}(\rho)) - c\delta - \eta(\delta)]} \Pi \\
= 2^{-n[H(A)_{\theta} + H(B)_{\theta} - c\delta - \eta(\delta)]} \Pi$$

where the first inequality follows from (39) and the second inequality follows since $\sum_{\alpha} p_{\alpha} \pi_{\alpha} = \rho^{\otimes n}$.

Converse. It suffices to prove a converse for the entanglement-assisted common randomness generation. In this protocol, Alice prepares a common randomness state $\bar{\Phi}_{MM'}$ of size 2^{nR} , and performs an encoding operation before sending through the channel \mathcal{N} . Bob then performs a decoding POVM on the channel output B and his half preshared entangled system T_B of $\sigma_{MT_BB^n}$ to generate $\omega_{MM'}$ so that

$$\|\omega_{MM'} - \bar{\Phi}_{MM'}\|_1 < \epsilon.$$

Then

$$nR = I(M:M')_{\bar{\Phi}}$$

$$\leq I(M:M')_{\omega} + n\epsilon'$$

$$\leq I(M:B^nT_B)_{\sigma} + n\epsilon'$$

$$= I(T_BM:B^n)_{\sigma} + I(M:T_B)_{\sigma} - I(B^n:T_B)_{\sigma} + n\epsilon'$$

$$\leq I(T_BM:B^n)_{\sigma} + n\epsilon'$$

$$\leq \max_{\sigma} I(T_BM:B^n)_{\sigma} + n\epsilon'$$

$$= I(\mathcal{N}^{\otimes n}) + n\epsilon'$$

$$= nI(\mathcal{N}) + n\epsilon'.$$

The first inequality follows from the continuity of mutual information (Lemma 33). The second inequality uses data processing inequality (Lemma 15). The third inequality follows since $I(M:T_B)_{\sigma}=0$ and $I(B^n:T_B)_{\sigma}\geq 0$. The second last line uses the result in Exercise 41. The last line follows since the quantity $I(\mathcal{N}^{\otimes n})=nI(\mathcal{N})$ is additive.

Exercise 41 Denote
$$\sigma_{XAB} = \sum_{x} p_x |x\rangle \langle x|_X \otimes \mathcal{N}_{A' \to B}(\varphi_x^{AA'})$$
. Show that

$$\max_{\sigma} I(XA:B)_{\sigma} = I(\mathcal{N}).$$

Exercise 42 Show that

$$I(\mathcal{N}_1 \otimes \mathcal{N}_2) = I(\mathcal{N}_1) + I(\mathcal{N}_2).$$

6 Private Coding

The core technical tool for proving the private capacity is the following covering lemma. The following explicit form of covering lemma first appeared in Ref. [DHW06].

Covering Lemma

We first prove a quantum generalization of the covering lemma.

Lemma 43 (Covering lemma) We are given an ensemble $\{p_x, \sigma_x\}_{x \in \mathcal{X}}$ with average density operator $\sigma = \sum_{x \in \mathcal{X}} p_x \sigma_x$. Assume the existence of projectors Π and $\{\Pi_x\}_{x \in \mathcal{X}}$ with the following properties $(\forall x \in \mathcal{X})$:

$$\operatorname{Tr} \sigma_x \Pi_x \geq 1 - \epsilon,$$
 (40)

$$\operatorname{Tr} \sigma_x \Pi \geq 1 - \epsilon,$$
 (41)

$$\operatorname{Tr} \Pi \leq D,$$
 (42)

$$\Pi_x \sigma_x \Pi_x \leq d^{-1} \Pi_x. \tag{43}$$

In addition, we require Π_x and σ_x to commute for all x. The obfuscation error of a set $S \subseteq \mathcal{X}$ is defined as

$$oe(S) = \left\| \frac{1}{|S|} \sum_{x \in S} \sigma_x - \sigma \right\|_1.$$

Define the set $C = \{X_s\}_{s \in [N]}$, where X_s is a random variable chosen independently according to the distribution p on \mathcal{X} , and $N = \lceil \gamma^{-1}D/d \rceil$ for some $0 < \gamma < 1$. Then

$$\Pr\{oe(\mathcal{C}) \ge 3\epsilon + 19\sqrt{\epsilon}\} \le 2D \exp\left(-\frac{\epsilon^3}{2 \ln 2\gamma}\right).$$
 (44)

Proof. The proof of the covering lemma involves the following steps.

1. Define $\sigma'_x = \Pi_x \sigma_x \Pi_x$. Since σ_x and Π_x commute, (40) implies

$$\|\sigma_x - \sigma_x'\|_1 \le \epsilon.$$

2. Define $\omega'_x = \Pi \sigma'_x \Pi$. Then (41) and Exercise 26 give

$$\operatorname{Tr} \omega_x' = \operatorname{Tr} \Pi \sigma_x'$$

$$\geq \operatorname{Tr} \Pi \sigma_x - \|\sigma_x - \sigma_x'\|_1$$

$$\geq 1 - 2\epsilon.$$
(45)

Furthermore, the gentle measurement lemma (Lemma 30) gives

$$\|\omega_x' - \sigma_x'\|_1 \le \sqrt{16\epsilon}.$$

Applying the triangle inequality, we have

$$\|\omega_{x}' - \sigma_{x}\|_{1} \le \|\omega_{x}' - \sigma_{x}'\|_{1} + \|\sigma_{x}' - \sigma_{x}\|_{1}$$

$$\le \epsilon + \sqrt{16\epsilon}.$$
(46)

3. Define $\omega' = \sum_{x \in \mathcal{X}} p(x) \omega'_x$. Let $\hat{\Pi}$ be the projector onto the subspace spanned by the eigenvectors of ω' with eigenvalue $\geq \epsilon D^{-1}$. Define $\omega_x = \hat{\Pi} \omega'_x \hat{\Pi}$ and $\omega = \hat{\Pi} \omega' \hat{\Pi}$. Since (42) implies that the support of ω' has dimension $\leq D$, eigenvalues smaller than ϵD^{-1} contribute at most ϵ to $\text{Tr }\omega'$. Together with (45) thus gives

$$\operatorname{Tr} \omega \ge \operatorname{Tr} \omega' - \epsilon \ge 1 - 3\epsilon. \tag{47}$$

Furthermore, the gentle measurement lemma (Lemma 30) gives

$$\|\omega - \omega'\|_1 \le \sqrt{24\epsilon}.\tag{48}$$

4. Consider the operator ensemble $\{p_x, d\omega_x\}_{x\in\mathcal{X}}$. The expectation value of this ensemble is

$$\sum_{x \in \mathcal{X}} p_x d\omega_x = d\left(\hat{\Pi} \sum_{x \in \mathcal{X}} p_x \omega_x' \hat{\Pi}\right)$$
$$= d\hat{\Pi} \omega' \hat{\Pi}$$
$$\geq tI,$$

where $t = \epsilon d/D$. Now application of the operator Chernoff bound (Lemma 44) gives

$$\Pr\left\{\frac{1}{N}\sum_{s=1}^{N}\omega_{M_s} \notin [(1\pm\epsilon)\omega]\right\} \le 2D \exp\left(-N\frac{\epsilon^2 t}{2\ln 2}\right). \tag{49}$$

5. The last step is to translate (49) into a statement about σ_{M_s} . Assume that for some set $S \in \mathcal{X}$ the following condition holds:

$$\frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \omega_m \in [(1 \pm \epsilon)\omega].$$

This implies that

$$\left\| \frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \omega_m - \omega \right\|_1 \le \epsilon. \tag{50}$$

Together with (47) thus gives

$$\operatorname{Tr}\left(\frac{1}{|\mathcal{S}|}\sum_{m\in\mathcal{S}}\omega_m\right) \ge 1 - 4\epsilon.$$
 (51)

Application of the gentle measurement lemma (Lemma 30) to (51) gives

$$\left\| \frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \omega_m' - \frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \omega_m \right\|_1 \le \sqrt{32\epsilon}. \tag{52}$$

Application of the triangle inequality together with (46) gives

$$\left\| \frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \omega'_m - \frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \sigma_m \right\|_1 \leq \frac{1}{|\mathcal{S}|} \sum_{m \in \mathcal{S}} \|\omega'_m - \sigma_m\|_1 \\ \leq \epsilon + \sqrt{16\epsilon}, \tag{53}$$

and analogously

$$\|\omega' - \sigma\|_1 \le \epsilon + \sqrt{16\epsilon}.\tag{54}$$

Finally, combination of (48), (50), and (52)-(54) with the triangle inequality gives

$$oe(S) = \left\| \frac{1}{|S|} \sum_{m} \sigma_m - \sigma \right\|_1 \le 3\epsilon + 19\sqrt{\epsilon}.$$

The statement of the lemma follows immediately from (49).

Lemma 44 (Operator Chernoff Bound [AW02]). Let ξ_1, \dots, ξ_{ν} be independent and identically distributed random variables with values in the algebra $B(\mathcal{H})$ of bounded linear operators on some Hilbert space \mathcal{H} , which are bounded between 0 and the identity operator I. Assume that the expectation value $\mathbb{E}\xi_s = \theta \geq tI$. Then for every $0 < \eta < 1/2$

$$\Pr\left\{\frac{1}{\nu}\sum_{s=1}^{\nu}\xi_{s}\neq\left[(1\pm\eta)\theta\right]\right\}\leq2\ \dim\mathcal{H}\ \exp\left(-\nu\frac{\eta^{2}t}{2\ \ln2}\right),$$

where $[(1 \pm \eta)\theta] \equiv [(1 - \eta)\theta; (1 + \eta)\theta]$ is an interval in the operator order: $[A; B] \equiv \{\xi \in B(\mathcal{H}) : A \leq \xi \leq B\}$.

Consider an ensemble $\{p_{x^n}, \sigma_{x^n}^E\}_{x^n \in \mathcal{X}^n}$ with average density operator $\sigma^E = \sum_{x^n} p_{x^n} \sigma_{x^n}^E$. We can define a *covering code* \mathcal{C} as follows.

Corollary 45 (Covering Code) There exists a covering code $C = \{X_s\}_{s \in [S]}$ of size $S = 2^{n[I(X:E)_{\sigma} + 3c\delta]}$ so that for all $\epsilon, \delta > 0$ and sufficiently large n,

$$\Pr\{oe(\mathcal{C}) \ge 3\epsilon + 19\sqrt{\epsilon}\} \le 2|d_E|^n \exp\left(-\frac{\epsilon^3}{4\ln 2}2^{nc\delta}\right).$$
 (55)

Proof. We can relate to Lemma 43 through the identifications $\mathcal{X} \to \mathcal{X}^n$, $\sigma_x \to \sigma_{x^n}$, $p \to p^n$, $\sigma \to \sigma^E$, $\Pi \to \Pi^n_{\delta(|\mathcal{X}|+1),\sigma}$, and $\Pi_x \to \hat{\Pi}^n_{\delta,\sigma_{x^n}}$ with

$$\hat{\Pi}^n_{E|X,\delta}(x^n) = \begin{cases} \Pi^n_{E|X,\delta}(x^n), & x^n \in \mathcal{T}^n_{X,\delta}, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, we see that

$$D = 2^{n[H(E)_{\sigma} + c\delta]}$$

$$d = 2^{n[H(E|X)_{\sigma} - c\delta]}$$

These follow from the properties of typical subspaces and conditionally typical subspaces mentioned before.

Private Communication

A quantum channel \mathcal{N} with the classical encoding map $\mathcal{E}: \mathcal{X} \to A$ can always be viewed as a classical-quantum channel $W: \mathcal{X} \to A$ so that

$$W(x) = \mathcal{N}(\mathcal{E}(x)) := \sigma_{E(x)}^{BE}$$
.

Moreover, in the private setting, a classical-quantum channel $W: \mathcal{X} \to BE$ will generate two output quantum systems, where B is for the legitimate receiver while E goes to the eavesdropper. We can thus define an (n, R, ϵ) private code as follows.

1. An encoding map $E: \{0,1\}^{nR} \to \mathcal{X}^n$ by Alice; Alice encodes the index m as E(m) and sends it through the channel $W^{\otimes n}$, generating the state

$$\Upsilon^{MBE} = \frac{1}{2^{nR}} \sum_{m \in \{0,1\}^{nR}} |m\rangle\langle m|^M \otimes \sigma_{E(m)}^{BE}.$$
 (56)

2. A decoding POVM $\{\Lambda_{m'}\}_{m'\in\{0,1\}^{nR}}$;

so that

$$\left\| \tilde{\Upsilon}^{BE} - \tau^B \otimes \sigma^E \right\|_1 \le \epsilon, \tag{57}$$

where $\tilde{\Upsilon}^{BE}$ is the quantum system after Bob's decoding operation, and

$$\tau^B = \frac{1}{2^{nR}} \sum_{m} |m\rangle\langle m|^B$$

contains the private classical information that is decoupled from Eve's state σ^E .

We say the rate R is *achievable* if for any $\epsilon, \delta > 0$ and sufficiently large n there exists an $(n, R - \delta, \epsilon)$ private code. The private capacity $\mathcal{P}(\mathcal{N})$ is defined as

$$\mathcal{P}(\mathcal{N}) = \sup\{R : R \text{ is achievable}\}.$$

Let

$$I_p(\mathcal{N}) = \max_{\rho} I(X:B)_{\sigma} - I(X:E)_{\sigma}$$

where

$$\rho_{XA} = \sum_{x} p_x |x\rangle\langle x|_X \otimes \rho_x^A.$$

is the input to the channel \mathcal{N} generating $\sigma_{XBE} = \sum_{x} p_x |x\rangle\langle x|_X \otimes \mathcal{N}_{A\to BE}(\rho_x^A)$.

Theorem 46 (Private Capacity [Dev05])

$$\mathcal{P}(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} I_p(\mathcal{N}^{\otimes n}).$$

Direct Coding Theorem.

Fix $\epsilon, \delta > 0$ and a sufficiently large n. Consider the ensemble $\{p_{x^n}, \sigma_{x^n}^{BE}\}$ of the channel output $W^{\otimes n}$. There exists an encoding map $E:(M,S)\to \mathcal{X}^n$ for Alice, where $X^n\in \mathcal{X}^n$ is i.i.d. with distribution p, M represents the private classical message taken values from $\{0,1\}^{nR}$, and S represents the bits with value taken from $\{0,1\}^{nR_s}$ that needs to be sacrificed in order to blind eavesdropper's information about the private messages.

First, we invoke the HSW theorem (direct coding theorem of Theorem 39). There exists a code $C = \{X_{E(m,s)}\}_{(m,s)\in 2^{n_r}}$, where $r := R + R_s = I(X:B) - 2(c + c'\delta)\delta$ so that

$$\mathbb{E}[p_e(\mathcal{C})] \le \epsilon.$$

For each $m \in \{0,1\}^{nR}$, define $\mathcal{C}_m = \{X_{E(m,s)}\}_{s \in [2^{nR_s}]}$, where \mathcal{C}_m works as a covering code. Choose $R_s = I(X:E) + 3c\delta$. For any $m \in \{0,1\}^{nR}$, define the logic statement ℓ_m by $oe(\mathcal{C}_m) \leq 3\epsilon + 19\sqrt{\epsilon}$, where

$$oe(\mathcal{C}_m) = \left\| \frac{1}{2^{nR_s}} \sum_{s} \sigma^E_{X_{E(m,s)}} - \sigma^E \right\|_1,$$

where

$$\sigma^E = \sum_{x^n} p_{x^n} \sigma^E_{x^n}$$

and $\sigma_{x^n}^E = \operatorname{Tr}_B \sigma_{x^n}^{BE}$. By Corollary 45, $\forall m$,

$$\Pr\{\text{not } \ell_m\} \le 2|d_E|^n \exp\left(-\frac{\epsilon^3}{4\ln 2}2^{nc\delta}\right). \tag{58}$$

The probability of (58) can be made $\leq \epsilon 2^{-nR}$ for some R when n is sufficient large since the right-hand side is a double exponential in n.

Define the logic statement ℓ_0 by $\{p_e(\mathcal{C}) \leq \sqrt{\epsilon}\}$. By the Markov inequality, $\Pr\{\text{not } \ell_0\} \leq \sqrt{\epsilon}$. By the union bound,

$$\Pr\{\text{not } (\ell_0 \wedge \ell_1 \wedge \dots \wedge \ell_{|m|})\} \leq \sum_{i=0}^{2^{nR}} \Pr\{\text{not } \ell_i\} \leq \epsilon + \sqrt{\epsilon},$$

where \wedge means the logic operator "AND". Hence there exists a specific choice of $\{X_{E(m,s)}\}$, say $\{x_{E(m,s)}\}$, for which all these conditions are satisfied.

Denote by $\tilde{\Upsilon}^{BE}$ the state after Bob's POVM measurement and

$$\tilde{\Upsilon}_0^{BE} = \frac{1}{2^{nR}} \sum_m |m\rangle\!\langle m|^B \otimes \frac{1}{2^{nR_s}} \sum_s \sigma^E_{X_{f(m,s)}} \; .$$

Consequently,

$$\|\tilde{\Upsilon}^{BE} - \tau^B \otimes \sigma^E\|_1 \le \|\tilde{\Upsilon}^{BE} - \tilde{\Upsilon}^{BE}_0\|_1 + \|\tilde{\Upsilon}^{BE}_0 - \tau^B \otimes \sigma^E\|_1$$

$$\le 4\epsilon + 20\sqrt{\epsilon},$$

as claimed in (57).

Converse. We use the same trick. We consider the task of secret-key generation, where Alice prepares $\bar{\Phi}_{MM'}$ of size 2^{nR} . She then encodes M' before sending through the channel \mathcal{N} . Bob performs his POVM on the channel output

$$\sigma_{MBE} = 2^{-nR} \sum_{m} |m\rangle\langle m|_{M} \otimes \sigma_{m}^{B^{n}E^{n}}$$

yielding the state $\omega_{M\hat{M}E}$ so that

$$\|\omega_{M\hat{M}E} - \bar{\Phi}_{MM'} \otimes \sigma_{E^n}\|_1 \le \epsilon.$$

The above condition guarantees

$$I(M:E^n)_{\omega} \le n\epsilon'. \tag{59}$$

We have

$$nR = I(M:M')_{\bar{\Phi}}$$

$$\leq I(M:\hat{M})_{\omega} + n\epsilon'$$

$$\leq I(M:B^n)_{\sigma} + n\epsilon'$$

$$\leq I(M:B^n)_{\sigma} - I(M:E^n)_{\sigma} + 2n\epsilon'$$

$$\leq I_p(\mathcal{N}^{\otimes n}) + n\epsilon,$$

where the second line uses continuity of mutual information; the third line uses data processing inequality; the fourth lines follows from Eq. (59); the last line follows from the definition of I_p .

References

- [AW02] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels. *IEEE Transactions on Information Theory*, 48(3):569–579, Mar 2002. doi:10.1109/18.985947.
- [BSST02] C.H. Bennett, P.W. Shor, J.A. Smolin, and A.V. Thapliyal. Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem. *IEEE Transactions on Information Theory*, 48(10):2637–2655, Oct 2002. doi:10.1109/TIT.2002.802612.
- [Dev05] I. Devetak. The private classical capacity and quantum capacity of a quantum channel. IEEE Transactions on Information Theory, 51(1):44–55, Jan 2005. doi:10.1109/TIT. 2004.839515.
- [DHW06] Igor Devetak, Patrick Hayden, and Andreas Winter. Principles of quantum information theory. (unpublished), 2006.
- [HDW08] Min-Hsiu Hsieh, Igor Devetak, and Andreas Winter. Entanglement-Assisted Capacity of Quantum Multiple-Access Channels. *IEEE Trans. Inf. Theory*, 54:3078, 2008.
- [HN03] M. Hayashi and H. Nagaoka. General formulas for capacity of classical-quantum channels. *IEEE Transactions on Information Theory*, 49(7):1753–1768, July 2003. doi:10.1109/TIT.2003.813556.
- [Hol98] A. S. Holevo. The capacity of the quantum channel with general signal states. *IEEE Trans. Inf. Theory*, 44:269, 1998. doi:10.1109/18.651037.
- [Sch95] Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, 1995.
- [SW97] Benjamin Schumacher and Michael D. Westmoreland. Sending classical information via noisy quantum channels. *Phys. Rev. A*, 56:131–138, 1997. doi:10.1103/PhysRevA.56. 131.